Upload 11 files
Browse files- README.md +106 -0
- added_tokens.json +3 -0
- alpaca-7b-native-enhanced-4bit-128g-gptq.pt +3 -0
- config.json +32 -0
- generation_config.json +7 -0
- pytorch_model.bin.index.json +330 -0
- special_tokens_map.json +6 -0
- tokenizer.model +3 -0
- tokenizer_config.json +9 -0
- trainer_state.json +2545 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,109 @@
|
|
1 |
---
|
2 |
license: wtfpl
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: wtfpl
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- llama
|
8 |
+
library_name: adapter-transformers
|
9 |
---
|
10 |
+
|
11 |
+
### About the GPTQ version
|
12 |
+
- Quantized to 4-bits 128g using GPTQ-for-LLaMA.
|
13 |
+
- Intended for use with Oobabooga Text Generation WebUI.
|
14 |
+
|
15 |
+
### Loading model in Oobabooga WebUI
|
16 |
+
- Use same parameters as the original model, which can be found in the original repo linked below.
|
17 |
+
- Use `AutoGPTQ` loader.
|
18 |
+
|
19 |
+
### Information about original model
|
20 |
+
*Original repo: [8bit-coder/alpaca-7b-nativeEnhanced](https://huggingface.co/8bit-coder/alpaca-7b-nativeEnhanced)*
|
21 |
+
*Alternate: [pi3141/alpaca-7b-native-enhanced](https://huggingface.co/pi3141/alpaca-7b-native-enhanced)*
|
22 |
+
Below are information about the original model
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
<p align="center"><img src="https://cdn-uploads.huggingface.co/production/uploads/615a1b7a321f65c4da59c3d3/DFHgrYeqJNIchgLrgfZzl.png" height=256></p>
|
27 |
+
<h1 align="center">
|
28 |
+
Alpaca 7B Native Enhanced
|
29 |
+
</h1>
|
30 |
+
<p align="center">The Most Advanced Alpaca 7B Model</p>
|
31 |
+
|
32 |
+
## 📃 Model Facts
|
33 |
+
|
34 |
+
- Trained natively on 8x Nvidia A100 40GB GPUs; no LoRA used
|
35 |
+
- Trained on the largest & most accurate dataset yet
|
36 |
+
- Enhanced Programming Capabilities
|
37 |
+
- First Alpaca model to have conversational awareness
|
38 |
+
|
39 |
+
## 🚀 Quick Start Guide
|
40 |
+
|
41 |
+
Step 1. Make sure git-lfs is installed and ready to use ([Guide](https://git-lfs.com/))
|
42 |
+
|
43 |
+
Step 2. Download and install [text-generation-webui](https://github.com/oobabooga/text-generation-webui) according to the repository's instructions
|
44 |
+
|
45 |
+
Step 3. Navigate over to one of it's model folders and clone this repository:
|
46 |
+
|
47 |
+
git clone https://huggingface.co/8bit-coder/alpaca-7b-nativeEnhanced
|
48 |
+
|
49 |
+
Step 4. Launch the webui, replace "Your name" with "User" and replace the default instruction prompt with:
|
50 |
+
|
51 |
+
> You are an AI language model designed to assist the User by answering their questions, offering advice, and engaging in casual conversation in a friendly, helpful, and informative manner. You respond clearly, coherently, and you consider the conversation history.
|
52 |
+
>
|
53 |
+
> User: Hey, how's it going?
|
54 |
+
>
|
55 |
+
> Assistant: Hey there! I'm doing great, thank you. What can I help you with today? Let's have a fun chat!
|
56 |
+
|
57 |
+
Step 5. Change the settings to match this screenshot:
|
58 |
+
![Settings](https://cdn-uploads.huggingface.co/production/uploads/615a1b7a321f65c4da59c3d3/m8s2o52xN2I6MDy0sZ5rZ.png)
|
59 |
+
|
60 |
+
## 📚 Training
|
61 |
+
|
62 |
+
#### We used 8x Nvidia A100 40GB GPUs for training this model. Training time took ~3 hours and resulting loss was 0.4761 over 3 epochs. The command used for training is as follows
|
63 |
+
|
64 |
+
> **torchrun --nproc_per_node=8 --master_port=3045 ./stanford_alpaca/train.py --model_name_or_path ./llama-7b-hf --data_path ./alpaca-7b-nativeEnhanced/training_files/alpaca-megaset-fixed.json --fp16 True --output_dir ./output_7b --num_train_epochs 3 --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --gradient_accumulation_steps 16 --evaluation_strategy "no" --save_strategy "steps" --save_steps 200 --learning_rate 2e-5 --weight_decay 0. --warmup_ratio 0.03 --lr_scheduler_type "cosine" --logging_steps 1 --fsdp "full_shard auto_wrap" --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' --tf32 True**
|
65 |
+
|
66 |
+
There's a folder in this repository called training_files. **full-training-instructions.txt** is the full list of commands from start to finish of training, to converting the model all the way to 4 bit quantized ggml. **It is not recommended to quantize this model down to 4 bits. The instructions are included purely for informational purposes.**
|
67 |
+
|
68 |
+
In addition, the training instructions file is built specifically for rented cloud computing. This means that by following the commands in the file, anyone should be able to train a similar model.
|
69 |
+
|
70 |
+
### Common errors while training
|
71 |
+
|
72 |
+
- CUDA Out of Memory error
|
73 |
+
- This is because your GPUs do not have a minimum of 40GB of vram. The weakest GPU that we've been able to successfully train on has been Nvidia A100 40GB. Even with 8 of these, the vram usage was almost always right up at the limit. If you have 40GB GPUs and are still running into this error, try halving the **per_device_train_batch_size** and **per_device_eval_batch_size** and doubling the **gradient_accumulation_steps**. If you have more than 40GB of vram per GPU and wish to train faster, the opposite applies.
|
74 |
+
|
75 |
+
- LLaMATokenizer error
|
76 |
+
- This happens because you forgot to fix tokenizer_config.json in the llama-7b-hf directory. The fix is to rename **LLaMATokenizer** to **LlamaTokenizer** in that file.
|
77 |
+
|
78 |
+
- RuntimeError: CUDA error: invalid device ordinal
|
79 |
+
- This error occurs when your **nproc_per_node** is set to a number greater than how many GPUs you have installed in your system. You can check how many GPUs you have installed by running **nvidia-smi**.
|
80 |
+
|
81 |
+
- torchrun is not recognized
|
82 |
+
- This error occurs when you have a python version older than 3.10. Follow the instructions in the training instructions file to install miniconda and get python 3.10 set up. Circumventing this error by running python -m torch.distributed.run will **not work**. Many of the dependencies require python 3.10 and will fatally error out at the start of training.
|
83 |
+
|
84 |
+
- KeyError
|
85 |
+
- This happens when your JSON training data is broken in some way. Try running the dataset_validator.py in the training_files folder to find the broken key.
|
86 |
+
|
87 |
+
## 📝 Notes
|
88 |
+
|
89 |
+
- The main version of this model is in the hugging face transformers data type. The other one (.pth) format is provided **purely for experimental use with llama.cpp** and is not guaranteed to have conversational awareness.
|
90 |
+
- This model exhibits weird behavior when quantized to 4 bits. This might be due to the complexity of the model. We recommend the smallest quantization to be 8 bits, but this is untested.
|
91 |
+
- This model is slightly **underfitted**. We observed that training the model with a smaller gradient accumulation size benefitted the response quality.
|
92 |
+
|
93 |
+
- This model appears to have full conversational awareness. This means that provided you're running the model in the same configuration we detailed in the Quick Start Guide, you should be able to hold very detailed conversation with the AI without issues. There is a limit to it's memory, and it's 2048 tokens. Beyond that, it'll forget details and will need to be reminded.
|
94 |
+
|
95 |
+
## 🔧 Dataset
|
96 |
+
|
97 |
+
The dataset used for training this model is made from [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned) and [codealpaca](https://github.com/sahil280114/codealpaca). We combined these datasets for the following reasons:
|
98 |
+
|
99 |
+
1. Increased accuracy since the original stanford_alpaca dataset had many errors.
|
100 |
+
2. Better knowledge in programming
|
101 |
+
3. More training data
|
102 |
+
|
103 |
+
We had an issue with the latest AlpacaDataCleaned dataset where at around 90k lines in, one of the keys has a typo. The key is "instruction:" instead of "instruction". We have fixed this error in the provided megaset but if you plan on grabbing directly from AlpacaDataCleaned, make sure to fix this error. Otherwise, the training script will fail due to a KeyError.
|
104 |
+
|
105 |
+
## 👨💻 Credits
|
106 |
+
|
107 |
+
Credits go to [Meta](https://github.com/facebookresearch/llama) for creating the foundational LLaMA models and [Stanford](https://github.com/tatsu-lab/stanford_alpaca) for the instructions on how to train. For the dataset, credits go to [AlpacaDataCleaned](https://github.com/gururise/AlpacaDataCleaned) and [codealpaca](https://github.com/sahil280114/codealpaca). Credits also go to [chavinlo](https://huggingface.co/chavinlo/alpaca-native) for creating the original Alpaca 7B Native model, the inspiration behind this model.
|
108 |
+
|
109 |
+
Lastly, credits go to the homies that stayed up all night again and again: 8bit, π, chug, Taddy, yoyodapro, Symax, and most importantly: stablediffusion for the beautiful artwork
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
alpaca-7b-native-enhanced-4bit-128g-gptq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a768add1102cae8a248a120251978e74bcc0c34910ac84ac91f90892f67efc59
|
3 |
+
size 3894223459
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./llama-7b-hf",
|
3 |
+
"architectures": ["LlamaForCausalLM"],
|
4 |
+
"bos_token_id": 0,
|
5 |
+
"eos_token_id": 1,
|
6 |
+
"hidden_act": "silu",
|
7 |
+
"hidden_size": 4096,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 11008,
|
10 |
+
"max_sequence_length": 2048,
|
11 |
+
"model_type": "llama",
|
12 |
+
"num_attention_heads": 32,
|
13 |
+
"num_hidden_layers": 32,
|
14 |
+
"pad_token_id": -1,
|
15 |
+
"rms_norm_eps": 1e-6,
|
16 |
+
"tie_word_embeddings": false,
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.28.0.dev0",
|
19 |
+
"use_cache": true,
|
20 |
+
"vocab_size": 32001,
|
21 |
+
"quantization_config": {
|
22 |
+
"bits": 4,
|
23 |
+
"group_size": 128,
|
24 |
+
"damp_percent": 0.01,
|
25 |
+
"desc_act": false,
|
26 |
+
"sym": true,
|
27 |
+
"true_sequential": true,
|
28 |
+
"model_name_or_path": null,
|
29 |
+
"model_file_base_name": "model",
|
30 |
+
"quant_method": "gptq"
|
31 |
+
}
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.28.0.dev0"
|
7 |
+
}
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26953703424
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
329 |
+
}
|
330 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "</s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"unk_token": "</s>"
|
6 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "",
|
3 |
+
"eos_token": "",
|
4 |
+
"model_max_length": 512,
|
5 |
+
"padding_side": "right",
|
6 |
+
"special_tokens_map_file": "./llama-7b-hf/special_tokens_map.json",
|
7 |
+
"tokenizer_class": "LlamaTokenizer",
|
8 |
+
"unk_token": ""
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.995319812792512,
|
5 |
+
"global_step": 420,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 0.0,
|
13 |
+
"loss": 1.4861,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 0.0,
|
19 |
+
"loss": 1.4901,
|
20 |
+
"step": 2
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 1.5384615384615387e-06,
|
25 |
+
"loss": 1.4646,
|
26 |
+
"step": 3
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.03,
|
30 |
+
"learning_rate": 3.0769230769230774e-06,
|
31 |
+
"loss": 1.44,
|
32 |
+
"step": 4
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.04,
|
36 |
+
"learning_rate": 4.615384615384616e-06,
|
37 |
+
"loss": 1.4355,
|
38 |
+
"step": 5
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"learning_rate": 6.153846153846155e-06,
|
43 |
+
"loss": 1.1764,
|
44 |
+
"step": 6
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.05,
|
48 |
+
"learning_rate": 7.692307692307694e-06,
|
49 |
+
"loss": 1.0584,
|
50 |
+
"step": 7
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.06,
|
54 |
+
"learning_rate": 9.230769230769232e-06,
|
55 |
+
"loss": 1.0187,
|
56 |
+
"step": 8
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.06,
|
60 |
+
"learning_rate": 1.076923076923077e-05,
|
61 |
+
"loss": 1.0039,
|
62 |
+
"step": 9
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.07,
|
66 |
+
"learning_rate": 1.230769230769231e-05,
|
67 |
+
"loss": 0.9911,
|
68 |
+
"step": 10
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.08,
|
72 |
+
"learning_rate": 1.3846153846153847e-05,
|
73 |
+
"loss": 0.972,
|
74 |
+
"step": 11
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.09,
|
78 |
+
"learning_rate": 1.5384615384615387e-05,
|
79 |
+
"loss": 0.9573,
|
80 |
+
"step": 12
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.09,
|
84 |
+
"learning_rate": 1.6923076923076924e-05,
|
85 |
+
"loss": 0.9277,
|
86 |
+
"step": 13
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1,
|
90 |
+
"learning_rate": 1.8461538461538465e-05,
|
91 |
+
"loss": 0.8686,
|
92 |
+
"step": 14
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.11,
|
96 |
+
"learning_rate": 2e-05,
|
97 |
+
"loss": 0.9066,
|
98 |
+
"step": 15
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.11,
|
102 |
+
"learning_rate": 1.9999702094326033e-05,
|
103 |
+
"loss": 0.9442,
|
104 |
+
"step": 16
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.12,
|
108 |
+
"learning_rate": 1.9998808395053687e-05,
|
109 |
+
"loss": 0.8849,
|
110 |
+
"step": 17
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.13,
|
114 |
+
"learning_rate": 1.999731895543058e-05,
|
115 |
+
"loss": 0.8767,
|
116 |
+
"step": 18
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.14,
|
120 |
+
"learning_rate": 1.9995233864199213e-05,
|
121 |
+
"loss": 0.9332,
|
122 |
+
"step": 19
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.14,
|
126 |
+
"learning_rate": 1.9992553245591694e-05,
|
127 |
+
"loss": 0.9058,
|
128 |
+
"step": 20
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.15,
|
132 |
+
"learning_rate": 1.9989277259322314e-05,
|
133 |
+
"loss": 0.9563,
|
134 |
+
"step": 21
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.16,
|
138 |
+
"learning_rate": 1.998540610057806e-05,
|
139 |
+
"loss": 0.9188,
|
140 |
+
"step": 22
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.16,
|
144 |
+
"learning_rate": 1.9980940000006956e-05,
|
145 |
+
"loss": 0.9445,
|
146 |
+
"step": 23
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.17,
|
150 |
+
"learning_rate": 1.997587922370434e-05,
|
151 |
+
"loss": 0.8958,
|
152 |
+
"step": 24
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.18,
|
156 |
+
"learning_rate": 1.997022407319702e-05,
|
157 |
+
"loss": 0.8969,
|
158 |
+
"step": 25
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.19,
|
162 |
+
"learning_rate": 1.9963974885425267e-05,
|
163 |
+
"loss": 0.9201,
|
164 |
+
"step": 26
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.19,
|
168 |
+
"learning_rate": 1.9957132032722787e-05,
|
169 |
+
"loss": 0.8686,
|
170 |
+
"step": 27
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2,
|
174 |
+
"learning_rate": 1.9949695922794508e-05,
|
175 |
+
"loss": 0.8845,
|
176 |
+
"step": 28
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.21,
|
180 |
+
"learning_rate": 1.99416669986923e-05,
|
181 |
+
"loss": 0.9125,
|
182 |
+
"step": 29
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.21,
|
186 |
+
"learning_rate": 1.9933045738788564e-05,
|
187 |
+
"loss": 0.9097,
|
188 |
+
"step": 30
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.22,
|
192 |
+
"learning_rate": 1.992383265674776e-05,
|
193 |
+
"loss": 0.886,
|
194 |
+
"step": 31
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.23,
|
198 |
+
"learning_rate": 1.991402830149576e-05,
|
199 |
+
"loss": 0.9274,
|
200 |
+
"step": 32
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.24,
|
204 |
+
"learning_rate": 1.9903633257187186e-05,
|
205 |
+
"loss": 0.9153,
|
206 |
+
"step": 33
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.24,
|
210 |
+
"learning_rate": 1.9892648143170565e-05,
|
211 |
+
"loss": 0.9458,
|
212 |
+
"step": 34
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.25,
|
216 |
+
"learning_rate": 1.9881073613951464e-05,
|
217 |
+
"loss": 0.9064,
|
218 |
+
"step": 35
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.26,
|
222 |
+
"learning_rate": 1.986891035915346e-05,
|
223 |
+
"loss": 0.8758,
|
224 |
+
"step": 36
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.26,
|
228 |
+
"learning_rate": 1.9856159103477085e-05,
|
229 |
+
"loss": 0.8764,
|
230 |
+
"step": 37
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.27,
|
234 |
+
"learning_rate": 1.984282060665662e-05,
|
235 |
+
"loss": 0.9475,
|
236 |
+
"step": 38
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.28,
|
240 |
+
"learning_rate": 1.9828895663414838e-05,
|
241 |
+
"loss": 0.883,
|
242 |
+
"step": 39
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.29,
|
246 |
+
"learning_rate": 1.9814385103415662e-05,
|
247 |
+
"loss": 0.8835,
|
248 |
+
"step": 40
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.29,
|
252 |
+
"learning_rate": 1.9799289791214725e-05,
|
253 |
+
"loss": 0.8706,
|
254 |
+
"step": 41
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3,
|
258 |
+
"learning_rate": 1.9783610626207855e-05,
|
259 |
+
"loss": 0.923,
|
260 |
+
"step": 42
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.31,
|
264 |
+
"learning_rate": 1.9767348542577496e-05,
|
265 |
+
"loss": 0.8666,
|
266 |
+
"step": 43
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.31,
|
270 |
+
"learning_rate": 1.9750504509237046e-05,
|
271 |
+
"loss": 0.882,
|
272 |
+
"step": 44
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.32,
|
276 |
+
"learning_rate": 1.9733079529773123e-05,
|
277 |
+
"loss": 0.8919,
|
278 |
+
"step": 45
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.33,
|
282 |
+
"learning_rate": 1.9715074642385785e-05,
|
283 |
+
"loss": 0.911,
|
284 |
+
"step": 46
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.34,
|
288 |
+
"learning_rate": 1.9696490919826647e-05,
|
289 |
+
"loss": 0.9278,
|
290 |
+
"step": 47
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.34,
|
294 |
+
"learning_rate": 1.967732946933499e-05,
|
295 |
+
"loss": 0.8796,
|
296 |
+
"step": 48
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.35,
|
300 |
+
"learning_rate": 1.965759143257178e-05,
|
301 |
+
"loss": 0.9192,
|
302 |
+
"step": 49
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.36,
|
306 |
+
"learning_rate": 1.9637277985551643e-05,
|
307 |
+
"loss": 0.8925,
|
308 |
+
"step": 50
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.36,
|
312 |
+
"learning_rate": 1.9616390338572805e-05,
|
313 |
+
"loss": 0.9026,
|
314 |
+
"step": 51
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.37,
|
318 |
+
"learning_rate": 1.9594929736144978e-05,
|
319 |
+
"loss": 0.8203,
|
320 |
+
"step": 52
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.38,
|
324 |
+
"learning_rate": 1.95728974569152e-05,
|
325 |
+
"loss": 0.8867,
|
326 |
+
"step": 53
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.39,
|
330 |
+
"learning_rate": 1.9550294813591685e-05,
|
331 |
+
"loss": 0.8783,
|
332 |
+
"step": 54
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.39,
|
336 |
+
"learning_rate": 1.9527123152865562e-05,
|
337 |
+
"loss": 0.897,
|
338 |
+
"step": 55
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4,
|
342 |
+
"learning_rate": 1.950338385533067e-05,
|
343 |
+
"loss": 0.8365,
|
344 |
+
"step": 56
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.41,
|
348 |
+
"learning_rate": 1.9479078335401297e-05,
|
349 |
+
"loss": 0.8951,
|
350 |
+
"step": 57
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.41,
|
354 |
+
"learning_rate": 1.9454208041227905e-05,
|
355 |
+
"loss": 0.8633,
|
356 |
+
"step": 58
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.42,
|
360 |
+
"learning_rate": 1.9428774454610845e-05,
|
361 |
+
"loss": 0.9022,
|
362 |
+
"step": 59
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.43,
|
366 |
+
"learning_rate": 1.940277909091206e-05,
|
367 |
+
"loss": 0.885,
|
368 |
+
"step": 60
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.44,
|
372 |
+
"learning_rate": 1.937622349896483e-05,
|
373 |
+
"loss": 0.8765,
|
374 |
+
"step": 61
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.44,
|
378 |
+
"learning_rate": 1.9349109260981455e-05,
|
379 |
+
"loss": 0.8465,
|
380 |
+
"step": 62
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.45,
|
384 |
+
"learning_rate": 1.9321437992458996e-05,
|
385 |
+
"loss": 0.8642,
|
386 |
+
"step": 63
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.46,
|
390 |
+
"learning_rate": 1.929321134208304e-05,
|
391 |
+
"loss": 0.8872,
|
392 |
+
"step": 64
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.46,
|
396 |
+
"learning_rate": 1.9264430991629447e-05,
|
397 |
+
"loss": 0.9043,
|
398 |
+
"step": 65
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.47,
|
402 |
+
"learning_rate": 1.9235098655864156e-05,
|
403 |
+
"loss": 0.9398,
|
404 |
+
"step": 66
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.48,
|
408 |
+
"learning_rate": 1.920521608244102e-05,
|
409 |
+
"loss": 0.9099,
|
410 |
+
"step": 67
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.48,
|
414 |
+
"learning_rate": 1.9174785051797668e-05,
|
415 |
+
"loss": 0.8736,
|
416 |
+
"step": 68
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.49,
|
420 |
+
"learning_rate": 1.9143807377049443e-05,
|
421 |
+
"loss": 0.7984,
|
422 |
+
"step": 69
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.5,
|
426 |
+
"learning_rate": 1.911228490388136e-05,
|
427 |
+
"loss": 0.8401,
|
428 |
+
"step": 70
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.51,
|
432 |
+
"learning_rate": 1.9080219510438137e-05,
|
433 |
+
"loss": 0.8782,
|
434 |
+
"step": 71
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.51,
|
438 |
+
"learning_rate": 1.9047613107212314e-05,
|
439 |
+
"loss": 0.8569,
|
440 |
+
"step": 72
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.52,
|
444 |
+
"learning_rate": 1.9014467636930387e-05,
|
445 |
+
"loss": 0.8467,
|
446 |
+
"step": 73
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.53,
|
450 |
+
"learning_rate": 1.8980785074437095e-05,
|
451 |
+
"loss": 0.8492,
|
452 |
+
"step": 74
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.53,
|
456 |
+
"learning_rate": 1.8946567426577724e-05,
|
457 |
+
"loss": 0.8786,
|
458 |
+
"step": 75
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.54,
|
462 |
+
"learning_rate": 1.8911816732078577e-05,
|
463 |
+
"loss": 0.8782,
|
464 |
+
"step": 76
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.55,
|
468 |
+
"learning_rate": 1.8876535061425454e-05,
|
469 |
+
"loss": 0.8979,
|
470 |
+
"step": 77
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.56,
|
474 |
+
"learning_rate": 1.884072451674034e-05,
|
475 |
+
"loss": 0.906,
|
476 |
+
"step": 78
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.56,
|
480 |
+
"learning_rate": 1.880438723165612e-05,
|
481 |
+
"loss": 0.9005,
|
482 |
+
"step": 79
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.57,
|
486 |
+
"learning_rate": 1.8767525371189473e-05,
|
487 |
+
"loss": 0.828,
|
488 |
+
"step": 80
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.58,
|
492 |
+
"learning_rate": 1.8730141131611882e-05,
|
493 |
+
"loss": 0.8725,
|
494 |
+
"step": 81
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.58,
|
498 |
+
"learning_rate": 1.869223674031876e-05,
|
499 |
+
"loss": 0.8478,
|
500 |
+
"step": 82
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.59,
|
504 |
+
"learning_rate": 1.865381445569676e-05,
|
505 |
+
"loss": 0.8932,
|
506 |
+
"step": 83
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6,
|
510 |
+
"learning_rate": 1.861487656698919e-05,
|
511 |
+
"loss": 0.8847,
|
512 |
+
"step": 84
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.61,
|
516 |
+
"learning_rate": 1.8575425394159653e-05,
|
517 |
+
"loss": 0.9109,
|
518 |
+
"step": 85
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.61,
|
522 |
+
"learning_rate": 1.8535463287753797e-05,
|
523 |
+
"loss": 0.8571,
|
524 |
+
"step": 86
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.62,
|
528 |
+
"learning_rate": 1.849499262875927e-05,
|
529 |
+
"loss": 0.8681,
|
530 |
+
"step": 87
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.63,
|
534 |
+
"learning_rate": 1.845401582846385e-05,
|
535 |
+
"loss": 0.8969,
|
536 |
+
"step": 88
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.63,
|
540 |
+
"learning_rate": 1.8412535328311813e-05,
|
541 |
+
"loss": 0.8889,
|
542 |
+
"step": 89
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.64,
|
546 |
+
"learning_rate": 1.8370553599758424e-05,
|
547 |
+
"loss": 0.8971,
|
548 |
+
"step": 90
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.65,
|
552 |
+
"learning_rate": 1.8328073144122708e-05,
|
553 |
+
"loss": 0.8818,
|
554 |
+
"step": 91
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.66,
|
558 |
+
"learning_rate": 1.8285096492438424e-05,
|
559 |
+
"loss": 0.8723,
|
560 |
+
"step": 92
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.66,
|
564 |
+
"learning_rate": 1.8241626205303245e-05,
|
565 |
+
"loss": 0.8822,
|
566 |
+
"step": 93
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.67,
|
570 |
+
"learning_rate": 1.8197664872726206e-05,
|
571 |
+
"loss": 0.852,
|
572 |
+
"step": 94
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.68,
|
576 |
+
"learning_rate": 1.8153215113973398e-05,
|
577 |
+
"loss": 0.8946,
|
578 |
+
"step": 95
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.68,
|
582 |
+
"learning_rate": 1.810827957741188e-05,
|
583 |
+
"loss": 0.8812,
|
584 |
+
"step": 96
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.69,
|
588 |
+
"learning_rate": 1.8062860940351916e-05,
|
589 |
+
"loss": 0.8572,
|
590 |
+
"step": 97
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.7,
|
594 |
+
"learning_rate": 1.8016961908887444e-05,
|
595 |
+
"loss": 0.8703,
|
596 |
+
"step": 98
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.71,
|
600 |
+
"learning_rate": 1.7970585217734843e-05,
|
601 |
+
"loss": 0.8565,
|
602 |
+
"step": 99
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.71,
|
606 |
+
"learning_rate": 1.792373363007e-05,
|
607 |
+
"loss": 0.8724,
|
608 |
+
"step": 100
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.72,
|
612 |
+
"learning_rate": 1.7876409937363677e-05,
|
613 |
+
"loss": 0.8421,
|
614 |
+
"step": 101
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.73,
|
618 |
+
"learning_rate": 1.7828616959215185e-05,
|
619 |
+
"loss": 0.8504,
|
620 |
+
"step": 102
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.73,
|
624 |
+
"learning_rate": 1.7780357543184396e-05,
|
625 |
+
"loss": 0.8842,
|
626 |
+
"step": 103
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.74,
|
630 |
+
"learning_rate": 1.7731634564622087e-05,
|
631 |
+
"loss": 0.8467,
|
632 |
+
"step": 104
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.75,
|
636 |
+
"learning_rate": 1.768245092649861e-05,
|
637 |
+
"loss": 0.893,
|
638 |
+
"step": 105
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.76,
|
642 |
+
"learning_rate": 1.763280955923093e-05,
|
643 |
+
"loss": 0.8401,
|
644 |
+
"step": 106
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.76,
|
648 |
+
"learning_rate": 1.7582713420508052e-05,
|
649 |
+
"loss": 0.8824,
|
650 |
+
"step": 107
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.77,
|
654 |
+
"learning_rate": 1.7532165495114765e-05,
|
655 |
+
"loss": 0.8969,
|
656 |
+
"step": 108
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.78,
|
660 |
+
"learning_rate": 1.748116879475383e-05,
|
661 |
+
"loss": 0.8517,
|
662 |
+
"step": 109
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.78,
|
666 |
+
"learning_rate": 1.7429726357866516e-05,
|
667 |
+
"loss": 0.9263,
|
668 |
+
"step": 110
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.79,
|
672 |
+
"learning_rate": 1.7377841249451596e-05,
|
673 |
+
"loss": 0.8942,
|
674 |
+
"step": 111
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.8,
|
678 |
+
"learning_rate": 1.7325516560882706e-05,
|
679 |
+
"loss": 0.8849,
|
680 |
+
"step": 112
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.81,
|
684 |
+
"learning_rate": 1.727275540972417e-05,
|
685 |
+
"loss": 0.8786,
|
686 |
+
"step": 113
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.81,
|
690 |
+
"learning_rate": 1.7219560939545246e-05,
|
691 |
+
"loss": 0.8361,
|
692 |
+
"step": 114
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.82,
|
696 |
+
"learning_rate": 1.7165936319732833e-05,
|
697 |
+
"loss": 0.8518,
|
698 |
+
"step": 115
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.83,
|
702 |
+
"learning_rate": 1.711188474530263e-05,
|
703 |
+
"loss": 0.8686,
|
704 |
+
"step": 116
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.83,
|
708 |
+
"learning_rate": 1.7057409436708783e-05,
|
709 |
+
"loss": 0.8457,
|
710 |
+
"step": 117
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.84,
|
714 |
+
"learning_rate": 1.700251363965199e-05,
|
715 |
+
"loss": 0.8331,
|
716 |
+
"step": 118
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.85,
|
720 |
+
"learning_rate": 1.6947200624886145e-05,
|
721 |
+
"loss": 0.8336,
|
722 |
+
"step": 119
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.86,
|
726 |
+
"learning_rate": 1.6891473688023425e-05,
|
727 |
+
"loss": 0.8896,
|
728 |
+
"step": 120
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.86,
|
732 |
+
"learning_rate": 1.6835336149337976e-05,
|
733 |
+
"loss": 0.8698,
|
734 |
+
"step": 121
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.87,
|
738 |
+
"learning_rate": 1.677879135356805e-05,
|
739 |
+
"loss": 0.8493,
|
740 |
+
"step": 122
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.88,
|
744 |
+
"learning_rate": 1.6721842669716752e-05,
|
745 |
+
"loss": 0.8637,
|
746 |
+
"step": 123
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.88,
|
750 |
+
"learning_rate": 1.666449349085129e-05,
|
751 |
+
"loss": 0.8614,
|
752 |
+
"step": 124
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.89,
|
756 |
+
"learning_rate": 1.6606747233900816e-05,
|
757 |
+
"loss": 0.8878,
|
758 |
+
"step": 125
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.9,
|
762 |
+
"learning_rate": 1.6548607339452853e-05,
|
763 |
+
"loss": 0.8685,
|
764 |
+
"step": 126
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.91,
|
768 |
+
"learning_rate": 1.6490077271548287e-05,
|
769 |
+
"loss": 0.8429,
|
770 |
+
"step": 127
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.91,
|
774 |
+
"learning_rate": 1.6431160517474986e-05,
|
775 |
+
"loss": 0.8828,
|
776 |
+
"step": 128
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.92,
|
780 |
+
"learning_rate": 1.637186058756001e-05,
|
781 |
+
"loss": 0.8589,
|
782 |
+
"step": 129
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.93,
|
786 |
+
"learning_rate": 1.6312181014960483e-05,
|
787 |
+
"loss": 0.864,
|
788 |
+
"step": 130
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.93,
|
792 |
+
"learning_rate": 1.6252125355453058e-05,
|
793 |
+
"loss": 0.8906,
|
794 |
+
"step": 131
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.94,
|
798 |
+
"learning_rate": 1.619169718722209e-05,
|
799 |
+
"loss": 0.854,
|
800 |
+
"step": 132
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.95,
|
804 |
+
"learning_rate": 1.6130900110646404e-05,
|
805 |
+
"loss": 0.9064,
|
806 |
+
"step": 133
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.96,
|
810 |
+
"learning_rate": 1.6069737748084823e-05,
|
811 |
+
"loss": 0.9017,
|
812 |
+
"step": 134
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.96,
|
816 |
+
"learning_rate": 1.600821374366031e-05,
|
817 |
+
"loss": 0.8955,
|
818 |
+
"step": 135
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.97,
|
822 |
+
"learning_rate": 1.594633176304287e-05,
|
823 |
+
"loss": 0.8569,
|
824 |
+
"step": 136
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.98,
|
828 |
+
"learning_rate": 1.5884095493231123e-05,
|
829 |
+
"loss": 0.8699,
|
830 |
+
"step": 137
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.98,
|
834 |
+
"learning_rate": 1.582150864233266e-05,
|
835 |
+
"loss": 0.8945,
|
836 |
+
"step": 138
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.99,
|
840 |
+
"learning_rate": 1.5758574939343073e-05,
|
841 |
+
"loss": 0.8861,
|
842 |
+
"step": 139
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.0,
|
846 |
+
"learning_rate": 1.569529813392381e-05,
|
847 |
+
"loss": 0.8806,
|
848 |
+
"step": 140
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 1.01,
|
852 |
+
"learning_rate": 1.5631681996178735e-05,
|
853 |
+
"loss": 0.7215,
|
854 |
+
"step": 141
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.01,
|
858 |
+
"learning_rate": 1.5567730316429536e-05,
|
859 |
+
"loss": 0.6521,
|
860 |
+
"step": 142
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 1.02,
|
864 |
+
"learning_rate": 1.5503446904989856e-05,
|
865 |
+
"loss": 0.6706,
|
866 |
+
"step": 143
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 1.03,
|
870 |
+
"learning_rate": 1.54388355919383e-05,
|
871 |
+
"loss": 0.6824,
|
872 |
+
"step": 144
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 1.03,
|
876 |
+
"learning_rate": 1.537390022689022e-05,
|
877 |
+
"loss": 0.6543,
|
878 |
+
"step": 145
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 1.04,
|
882 |
+
"learning_rate": 1.530864467876836e-05,
|
883 |
+
"loss": 0.6559,
|
884 |
+
"step": 146
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.05,
|
888 |
+
"learning_rate": 1.5243072835572319e-05,
|
889 |
+
"loss": 0.6764,
|
890 |
+
"step": 147
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 1.06,
|
894 |
+
"learning_rate": 1.5177188604146929e-05,
|
895 |
+
"loss": 0.6662,
|
896 |
+
"step": 148
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 1.06,
|
900 |
+
"learning_rate": 1.5110995909949465e-05,
|
901 |
+
"loss": 0.6668,
|
902 |
+
"step": 149
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 1.07,
|
906 |
+
"learning_rate": 1.504449869681576e-05,
|
907 |
+
"loss": 0.6746,
|
908 |
+
"step": 150
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 1.08,
|
912 |
+
"learning_rate": 1.4977700926725231e-05,
|
913 |
+
"loss": 0.6726,
|
914 |
+
"step": 151
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 1.08,
|
918 |
+
"learning_rate": 1.4910606579564827e-05,
|
919 |
+
"loss": 0.6261,
|
920 |
+
"step": 152
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 1.09,
|
924 |
+
"learning_rate": 1.4843219652891889e-05,
|
925 |
+
"loss": 0.6561,
|
926 |
+
"step": 153
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.1,
|
930 |
+
"learning_rate": 1.4775544161695975e-05,
|
931 |
+
"loss": 0.6725,
|
932 |
+
"step": 154
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.11,
|
936 |
+
"learning_rate": 1.4707584138159652e-05,
|
937 |
+
"loss": 0.6421,
|
938 |
+
"step": 155
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1.11,
|
942 |
+
"learning_rate": 1.4639343631418239e-05,
|
943 |
+
"loss": 0.6568,
|
944 |
+
"step": 156
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 1.12,
|
948 |
+
"learning_rate": 1.457082670731857e-05,
|
949 |
+
"loss": 0.6381,
|
950 |
+
"step": 157
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 1.13,
|
954 |
+
"learning_rate": 1.4502037448176734e-05,
|
955 |
+
"loss": 0.6663,
|
956 |
+
"step": 158
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 1.13,
|
960 |
+
"learning_rate": 1.4432979952534853e-05,
|
961 |
+
"loss": 0.6344,
|
962 |
+
"step": 159
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 1.14,
|
966 |
+
"learning_rate": 1.4363658334916883e-05,
|
967 |
+
"loss": 0.6778,
|
968 |
+
"step": 160
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.15,
|
972 |
+
"learning_rate": 1.4294076725583463e-05,
|
973 |
+
"loss": 0.6412,
|
974 |
+
"step": 161
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.16,
|
978 |
+
"learning_rate": 1.4224239270285847e-05,
|
979 |
+
"loss": 0.6905,
|
980 |
+
"step": 162
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1.16,
|
984 |
+
"learning_rate": 1.4154150130018867e-05,
|
985 |
+
"loss": 0.6732,
|
986 |
+
"step": 163
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 1.17,
|
990 |
+
"learning_rate": 1.4083813480773036e-05,
|
991 |
+
"loss": 0.6823,
|
992 |
+
"step": 164
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 1.18,
|
996 |
+
"learning_rate": 1.4013233513285734e-05,
|
997 |
+
"loss": 0.6621,
|
998 |
+
"step": 165
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 1.18,
|
1002 |
+
"learning_rate": 1.394241443279152e-05,
|
1003 |
+
"loss": 0.6802,
|
1004 |
+
"step": 166
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.19,
|
1008 |
+
"learning_rate": 1.3871360458771575e-05,
|
1009 |
+
"loss": 0.6327,
|
1010 |
+
"step": 167
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.2,
|
1014 |
+
"learning_rate": 1.38000758247023e-05,
|
1015 |
+
"loss": 0.6688,
|
1016 |
+
"step": 168
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.21,
|
1020 |
+
"learning_rate": 1.3728564777803089e-05,
|
1021 |
+
"loss": 0.6781,
|
1022 |
+
"step": 169
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.21,
|
1026 |
+
"learning_rate": 1.3656831578783263e-05,
|
1027 |
+
"loss": 0.6387,
|
1028 |
+
"step": 170
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.22,
|
1032 |
+
"learning_rate": 1.3584880501588225e-05,
|
1033 |
+
"loss": 0.6211,
|
1034 |
+
"step": 171
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.23,
|
1038 |
+
"learning_rate": 1.35127158331448e-05,
|
1039 |
+
"loss": 0.6674,
|
1040 |
+
"step": 172
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.23,
|
1044 |
+
"learning_rate": 1.3440341873105834e-05,
|
1045 |
+
"loss": 0.664,
|
1046 |
+
"step": 173
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.24,
|
1050 |
+
"learning_rate": 1.3367762933593989e-05,
|
1051 |
+
"loss": 0.6374,
|
1052 |
+
"step": 174
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.25,
|
1056 |
+
"learning_rate": 1.3294983338944842e-05,
|
1057 |
+
"loss": 0.7106,
|
1058 |
+
"step": 175
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.26,
|
1062 |
+
"learning_rate": 1.3222007425449234e-05,
|
1063 |
+
"loss": 0.6743,
|
1064 |
+
"step": 176
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1.26,
|
1068 |
+
"learning_rate": 1.314883954109491e-05,
|
1069 |
+
"loss": 0.6266,
|
1070 |
+
"step": 177
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.27,
|
1074 |
+
"learning_rate": 1.3075484045307443e-05,
|
1075 |
+
"loss": 0.6409,
|
1076 |
+
"step": 178
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.28,
|
1080 |
+
"learning_rate": 1.3001945308690514e-05,
|
1081 |
+
"loss": 0.696,
|
1082 |
+
"step": 179
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1.28,
|
1086 |
+
"learning_rate": 1.2928227712765504e-05,
|
1087 |
+
"loss": 0.6427,
|
1088 |
+
"step": 180
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1.29,
|
1092 |
+
"learning_rate": 1.2854335649710436e-05,
|
1093 |
+
"loss": 0.687,
|
1094 |
+
"step": 181
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.3,
|
1098 |
+
"learning_rate": 1.2780273522098276e-05,
|
1099 |
+
"loss": 0.624,
|
1100 |
+
"step": 182
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1.31,
|
1104 |
+
"learning_rate": 1.2706045742634637e-05,
|
1105 |
+
"loss": 0.6444,
|
1106 |
+
"step": 183
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1.31,
|
1110 |
+
"learning_rate": 1.2631656733894842e-05,
|
1111 |
+
"loss": 0.64,
|
1112 |
+
"step": 184
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1.32,
|
1116 |
+
"learning_rate": 1.2557110928060456e-05,
|
1117 |
+
"loss": 0.6345,
|
1118 |
+
"step": 185
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1.33,
|
1122 |
+
"learning_rate": 1.2482412766655183e-05,
|
1123 |
+
"loss": 0.6863,
|
1124 |
+
"step": 186
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1.33,
|
1128 |
+
"learning_rate": 1.2407566700280247e-05,
|
1129 |
+
"loss": 0.6546,
|
1130 |
+
"step": 187
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.34,
|
1134 |
+
"learning_rate": 1.2332577188349217e-05,
|
1135 |
+
"loss": 0.6767,
|
1136 |
+
"step": 188
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.35,
|
1140 |
+
"learning_rate": 1.2257448698822314e-05,
|
1141 |
+
"loss": 0.6265,
|
1142 |
+
"step": 189
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1.36,
|
1146 |
+
"learning_rate": 1.2182185707940196e-05,
|
1147 |
+
"loss": 0.6039,
|
1148 |
+
"step": 190
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1.36,
|
1152 |
+
"learning_rate": 1.2106792699957264e-05,
|
1153 |
+
"loss": 0.6537,
|
1154 |
+
"step": 191
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1.37,
|
1158 |
+
"learning_rate": 1.2031274166874498e-05,
|
1159 |
+
"loss": 0.671,
|
1160 |
+
"step": 192
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.38,
|
1164 |
+
"learning_rate": 1.1955634608171792e-05,
|
1165 |
+
"loss": 0.6542,
|
1166 |
+
"step": 193
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 1.38,
|
1170 |
+
"learning_rate": 1.187987853053989e-05,
|
1171 |
+
"loss": 0.6243,
|
1172 |
+
"step": 194
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.39,
|
1176 |
+
"learning_rate": 1.1804010447611862e-05,
|
1177 |
+
"loss": 0.6399,
|
1178 |
+
"step": 195
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.4,
|
1182 |
+
"learning_rate": 1.1728034879694185e-05,
|
1183 |
+
"loss": 0.6114,
|
1184 |
+
"step": 196
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1.4,
|
1188 |
+
"learning_rate": 1.1651956353497418e-05,
|
1189 |
+
"loss": 0.6876,
|
1190 |
+
"step": 197
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1.41,
|
1194 |
+
"learning_rate": 1.1575779401866475e-05,
|
1195 |
+
"loss": 0.6567,
|
1196 |
+
"step": 198
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.42,
|
1200 |
+
"learning_rate": 1.1499508563510587e-05,
|
1201 |
+
"loss": 0.6602,
|
1202 |
+
"step": 199
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.43,
|
1206 |
+
"learning_rate": 1.1423148382732854e-05,
|
1207 |
+
"loss": 0.6618,
|
1208 |
+
"step": 200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1.43,
|
1212 |
+
"learning_rate": 1.1346703409159495e-05,
|
1213 |
+
"loss": 0.6235,
|
1214 |
+
"step": 201
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.44,
|
1218 |
+
"learning_rate": 1.1270178197468788e-05,
|
1219 |
+
"loss": 0.6743,
|
1220 |
+
"step": 202
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.45,
|
1224 |
+
"learning_rate": 1.1193577307119687e-05,
|
1225 |
+
"loss": 0.676,
|
1226 |
+
"step": 203
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.45,
|
1230 |
+
"learning_rate": 1.1116905302080163e-05,
|
1231 |
+
"loss": 0.6091,
|
1232 |
+
"step": 204
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.46,
|
1236 |
+
"learning_rate": 1.1040166750555288e-05,
|
1237 |
+
"loss": 0.6412,
|
1238 |
+
"step": 205
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.47,
|
1242 |
+
"learning_rate": 1.0963366224715035e-05,
|
1243 |
+
"loss": 0.6593,
|
1244 |
+
"step": 206
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.48,
|
1248 |
+
"learning_rate": 1.0886508300421892e-05,
|
1249 |
+
"loss": 0.6369,
|
1250 |
+
"step": 207
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 1.48,
|
1254 |
+
"learning_rate": 1.080959755695821e-05,
|
1255 |
+
"loss": 0.7025,
|
1256 |
+
"step": 208
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.49,
|
1260 |
+
"learning_rate": 1.0732638576753355e-05,
|
1261 |
+
"loss": 0.6387,
|
1262 |
+
"step": 209
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.5,
|
1266 |
+
"learning_rate": 1.0655635945110705e-05,
|
1267 |
+
"loss": 0.6821,
|
1268 |
+
"step": 210
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 1.5,
|
1272 |
+
"learning_rate": 1.0578594249934433e-05,
|
1273 |
+
"loss": 0.673,
|
1274 |
+
"step": 211
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.51,
|
1278 |
+
"learning_rate": 1.0501518081456164e-05,
|
1279 |
+
"loss": 0.6481,
|
1280 |
+
"step": 212
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.52,
|
1284 |
+
"learning_rate": 1.0424412031961485e-05,
|
1285 |
+
"loss": 0.6704,
|
1286 |
+
"step": 213
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.53,
|
1290 |
+
"learning_rate": 1.0347280695516319e-05,
|
1291 |
+
"loss": 0.6656,
|
1292 |
+
"step": 214
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 1.53,
|
1296 |
+
"learning_rate": 1.0270128667693225e-05,
|
1297 |
+
"loss": 0.644,
|
1298 |
+
"step": 215
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.54,
|
1302 |
+
"learning_rate": 1.0192960545297568e-05,
|
1303 |
+
"loss": 0.6596,
|
1304 |
+
"step": 216
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.55,
|
1308 |
+
"learning_rate": 1.011578092609365e-05,
|
1309 |
+
"loss": 0.6377,
|
1310 |
+
"step": 217
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 1.55,
|
1314 |
+
"learning_rate": 1.0038594408530768e-05,
|
1315 |
+
"loss": 0.6317,
|
1316 |
+
"step": 218
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.56,
|
1320 |
+
"learning_rate": 9.96140559146923e-06,
|
1321 |
+
"loss": 0.6491,
|
1322 |
+
"step": 219
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 1.57,
|
1326 |
+
"learning_rate": 9.884219073906353e-06,
|
1327 |
+
"loss": 0.6474,
|
1328 |
+
"step": 220
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.58,
|
1332 |
+
"learning_rate": 9.807039454702436e-06,
|
1333 |
+
"loss": 0.6897,
|
1334 |
+
"step": 221
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 1.58,
|
1338 |
+
"learning_rate": 9.729871332306775e-06,
|
1339 |
+
"loss": 0.6109,
|
1340 |
+
"step": 222
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.59,
|
1344 |
+
"learning_rate": 9.652719304483683e-06,
|
1345 |
+
"loss": 0.6783,
|
1346 |
+
"step": 223
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.6,
|
1350 |
+
"learning_rate": 9.57558796803852e-06,
|
1351 |
+
"loss": 0.6471,
|
1352 |
+
"step": 224
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 1.6,
|
1356 |
+
"learning_rate": 9.498481918543836e-06,
|
1357 |
+
"loss": 0.6259,
|
1358 |
+
"step": 225
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.61,
|
1362 |
+
"learning_rate": 9.42140575006557e-06,
|
1363 |
+
"loss": 0.6444,
|
1364 |
+
"step": 226
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.62,
|
1368 |
+
"learning_rate": 9.344364054889298e-06,
|
1369 |
+
"loss": 0.6624,
|
1370 |
+
"step": 227
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.63,
|
1374 |
+
"learning_rate": 9.267361423246645e-06,
|
1375 |
+
"loss": 0.6863,
|
1376 |
+
"step": 228
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 1.63,
|
1380 |
+
"learning_rate": 9.190402443041792e-06,
|
1381 |
+
"loss": 0.643,
|
1382 |
+
"step": 229
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.64,
|
1386 |
+
"learning_rate": 9.11349169957811e-06,
|
1387 |
+
"loss": 0.6617,
|
1388 |
+
"step": 230
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.65,
|
1392 |
+
"learning_rate": 9.036633775284968e-06,
|
1393 |
+
"loss": 0.6689,
|
1394 |
+
"step": 231
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.65,
|
1398 |
+
"learning_rate": 8.959833249444715e-06,
|
1399 |
+
"loss": 0.6269,
|
1400 |
+
"step": 232
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.66,
|
1404 |
+
"learning_rate": 8.883094697919839e-06,
|
1405 |
+
"loss": 0.6601,
|
1406 |
+
"step": 233
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.67,
|
1410 |
+
"learning_rate": 8.806422692880318e-06,
|
1411 |
+
"loss": 0.6672,
|
1412 |
+
"step": 234
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.68,
|
1416 |
+
"learning_rate": 8.729821802531213e-06,
|
1417 |
+
"loss": 0.6126,
|
1418 |
+
"step": 235
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 1.68,
|
1422 |
+
"learning_rate": 8.653296590840509e-06,
|
1423 |
+
"loss": 0.6506,
|
1424 |
+
"step": 236
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.69,
|
1428 |
+
"learning_rate": 8.576851617267151e-06,
|
1429 |
+
"loss": 0.6503,
|
1430 |
+
"step": 237
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.7,
|
1434 |
+
"learning_rate": 8.500491436489413e-06,
|
1435 |
+
"loss": 0.6969,
|
1436 |
+
"step": 238
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.7,
|
1440 |
+
"learning_rate": 8.424220598133526e-06,
|
1441 |
+
"loss": 0.6609,
|
1442 |
+
"step": 239
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.71,
|
1446 |
+
"learning_rate": 8.348043646502588e-06,
|
1447 |
+
"loss": 0.648,
|
1448 |
+
"step": 240
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.72,
|
1452 |
+
"learning_rate": 8.271965120305815e-06,
|
1453 |
+
"loss": 0.7073,
|
1454 |
+
"step": 241
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.73,
|
1458 |
+
"learning_rate": 8.19598955238814e-06,
|
1459 |
+
"loss": 0.6661,
|
1460 |
+
"step": 242
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.73,
|
1464 |
+
"learning_rate": 8.120121469460114e-06,
|
1465 |
+
"loss": 0.727,
|
1466 |
+
"step": 243
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.74,
|
1470 |
+
"learning_rate": 8.04436539182821e-06,
|
1471 |
+
"loss": 0.6866,
|
1472 |
+
"step": 244
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.75,
|
1476 |
+
"learning_rate": 7.968725833125505e-06,
|
1477 |
+
"loss": 0.6556,
|
1478 |
+
"step": 245
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.75,
|
1482 |
+
"learning_rate": 7.89320730004274e-06,
|
1483 |
+
"loss": 0.6132,
|
1484 |
+
"step": 246
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.76,
|
1488 |
+
"learning_rate": 7.81781429205981e-06,
|
1489 |
+
"loss": 0.6601,
|
1490 |
+
"step": 247
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 1.77,
|
1494 |
+
"learning_rate": 7.74255130117769e-06,
|
1495 |
+
"loss": 0.6627,
|
1496 |
+
"step": 248
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 1.78,
|
1500 |
+
"learning_rate": 7.667422811650786e-06,
|
1501 |
+
"loss": 0.6766,
|
1502 |
+
"step": 249
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 1.78,
|
1506 |
+
"learning_rate": 7.592433299719757e-06,
|
1507 |
+
"loss": 0.6407,
|
1508 |
+
"step": 250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.79,
|
1512 |
+
"learning_rate": 7.51758723334482e-06,
|
1513 |
+
"loss": 0.6199,
|
1514 |
+
"step": 251
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.8,
|
1518 |
+
"learning_rate": 7.442889071939548e-06,
|
1519 |
+
"loss": 0.665,
|
1520 |
+
"step": 252
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 1.8,
|
1524 |
+
"learning_rate": 7.368343266105162e-06,
|
1525 |
+
"loss": 0.671,
|
1526 |
+
"step": 253
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 1.81,
|
1530 |
+
"learning_rate": 7.293954257365368e-06,
|
1531 |
+
"loss": 0.6747,
|
1532 |
+
"step": 254
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 1.82,
|
1536 |
+
"learning_rate": 7.2197264779017275e-06,
|
1537 |
+
"loss": 0.6633,
|
1538 |
+
"step": 255
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 1.83,
|
1542 |
+
"learning_rate": 7.145664350289566e-06,
|
1543 |
+
"loss": 0.6527,
|
1544 |
+
"step": 256
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 1.83,
|
1548 |
+
"learning_rate": 7.071772287234497e-06,
|
1549 |
+
"loss": 0.6978,
|
1550 |
+
"step": 257
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.84,
|
1554 |
+
"learning_rate": 6.998054691309489e-06,
|
1555 |
+
"loss": 0.6754,
|
1556 |
+
"step": 258
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.85,
|
1560 |
+
"learning_rate": 6.924515954692563e-06,
|
1561 |
+
"loss": 0.66,
|
1562 |
+
"step": 259
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.85,
|
1566 |
+
"learning_rate": 6.851160458905093e-06,
|
1567 |
+
"loss": 0.6229,
|
1568 |
+
"step": 260
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 1.86,
|
1572 |
+
"learning_rate": 6.777992574550767e-06,
|
1573 |
+
"loss": 0.6619,
|
1574 |
+
"step": 261
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.87,
|
1578 |
+
"learning_rate": 6.705016661055162e-06,
|
1579 |
+
"loss": 0.6291,
|
1580 |
+
"step": 262
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 1.88,
|
1584 |
+
"learning_rate": 6.632237066406014e-06,
|
1585 |
+
"loss": 0.6353,
|
1586 |
+
"step": 263
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.88,
|
1590 |
+
"learning_rate": 6.559658126894169e-06,
|
1591 |
+
"loss": 0.6533,
|
1592 |
+
"step": 264
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.89,
|
1596 |
+
"learning_rate": 6.487284166855203e-06,
|
1597 |
+
"loss": 0.6381,
|
1598 |
+
"step": 265
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.9,
|
1602 |
+
"learning_rate": 6.4151194984117774e-06,
|
1603 |
+
"loss": 0.6156,
|
1604 |
+
"step": 266
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.9,
|
1608 |
+
"learning_rate": 6.343168421216741e-06,
|
1609 |
+
"loss": 0.6582,
|
1610 |
+
"step": 267
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 1.91,
|
1614 |
+
"learning_rate": 6.2714352221969155e-06,
|
1615 |
+
"loss": 0.6862,
|
1616 |
+
"step": 268
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.92,
|
1620 |
+
"learning_rate": 6.199924175297701e-06,
|
1621 |
+
"loss": 0.6487,
|
1622 |
+
"step": 269
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 1.93,
|
1626 |
+
"learning_rate": 6.128639541228427e-06,
|
1627 |
+
"loss": 0.6534,
|
1628 |
+
"step": 270
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.93,
|
1632 |
+
"learning_rate": 6.057585567208484e-06,
|
1633 |
+
"loss": 0.6827,
|
1634 |
+
"step": 271
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.94,
|
1638 |
+
"learning_rate": 5.986766486714268e-06,
|
1639 |
+
"loss": 0.6595,
|
1640 |
+
"step": 272
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.95,
|
1644 |
+
"learning_rate": 5.916186519226966e-06,
|
1645 |
+
"loss": 0.6754,
|
1646 |
+
"step": 273
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.95,
|
1650 |
+
"learning_rate": 5.845849869981137e-06,
|
1651 |
+
"loss": 0.6635,
|
1652 |
+
"step": 274
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.96,
|
1656 |
+
"learning_rate": 5.775760729714155e-06,
|
1657 |
+
"loss": 0.6604,
|
1658 |
+
"step": 275
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.97,
|
1662 |
+
"learning_rate": 5.705923274416536e-06,
|
1663 |
+
"loss": 0.6956,
|
1664 |
+
"step": 276
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.98,
|
1668 |
+
"learning_rate": 5.636341665083121e-06,
|
1669 |
+
"loss": 0.6262,
|
1670 |
+
"step": 277
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.98,
|
1674 |
+
"learning_rate": 5.5670200474651505e-06,
|
1675 |
+
"loss": 0.6186,
|
1676 |
+
"step": 278
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.99,
|
1680 |
+
"learning_rate": 5.497962551823266e-06,
|
1681 |
+
"loss": 0.6558,
|
1682 |
+
"step": 279
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 2.0,
|
1686 |
+
"learning_rate": 5.429173292681433e-06,
|
1687 |
+
"loss": 0.7025,
|
1688 |
+
"step": 280
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 2.0,
|
1692 |
+
"learning_rate": 5.3606563685817646e-06,
|
1693 |
+
"loss": 0.5535,
|
1694 |
+
"step": 281
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 2.01,
|
1698 |
+
"learning_rate": 5.29241586184035e-06,
|
1699 |
+
"loss": 0.5372,
|
1700 |
+
"step": 282
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 2.02,
|
1704 |
+
"learning_rate": 5.224455838304028e-06,
|
1705 |
+
"loss": 0.5183,
|
1706 |
+
"step": 283
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 2.03,
|
1710 |
+
"learning_rate": 5.1567803471081164e-06,
|
1711 |
+
"loss": 0.5192,
|
1712 |
+
"step": 284
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 2.03,
|
1716 |
+
"learning_rate": 5.089393420435176e-06,
|
1717 |
+
"loss": 0.5072,
|
1718 |
+
"step": 285
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 2.04,
|
1722 |
+
"learning_rate": 5.022299073274769e-06,
|
1723 |
+
"loss": 0.5038,
|
1724 |
+
"step": 286
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 2.05,
|
1728 |
+
"learning_rate": 4.9555013031842445e-06,
|
1729 |
+
"loss": 0.5133,
|
1730 |
+
"step": 287
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 2.05,
|
1734 |
+
"learning_rate": 4.889004090050536e-06,
|
1735 |
+
"loss": 0.483,
|
1736 |
+
"step": 288
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 2.06,
|
1740 |
+
"learning_rate": 4.822811395853073e-06,
|
1741 |
+
"loss": 0.478,
|
1742 |
+
"step": 289
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 2.07,
|
1746 |
+
"learning_rate": 4.756927164427685e-06,
|
1747 |
+
"loss": 0.491,
|
1748 |
+
"step": 290
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 2.08,
|
1752 |
+
"learning_rate": 4.691355321231645e-06,
|
1753 |
+
"loss": 0.5153,
|
1754 |
+
"step": 291
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 2.08,
|
1758 |
+
"learning_rate": 4.62609977310978e-06,
|
1759 |
+
"loss": 0.5066,
|
1760 |
+
"step": 292
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 2.09,
|
1764 |
+
"learning_rate": 4.561164408061703e-06,
|
1765 |
+
"loss": 0.495,
|
1766 |
+
"step": 293
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 2.1,
|
1770 |
+
"learning_rate": 4.496553095010147e-06,
|
1771 |
+
"loss": 0.5069,
|
1772 |
+
"step": 294
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 2.1,
|
1776 |
+
"learning_rate": 4.432269683570469e-06,
|
1777 |
+
"loss": 0.4724,
|
1778 |
+
"step": 295
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 2.11,
|
1782 |
+
"learning_rate": 4.368318003821266e-06,
|
1783 |
+
"loss": 0.4922,
|
1784 |
+
"step": 296
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 2.12,
|
1788 |
+
"learning_rate": 4.304701866076194e-06,
|
1789 |
+
"loss": 0.495,
|
1790 |
+
"step": 297
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 2.13,
|
1794 |
+
"learning_rate": 4.241425060656927e-06,
|
1795 |
+
"loss": 0.5082,
|
1796 |
+
"step": 298
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 2.13,
|
1800 |
+
"learning_rate": 4.178491357667342e-06,
|
1801 |
+
"loss": 0.4689,
|
1802 |
+
"step": 299
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 2.14,
|
1806 |
+
"learning_rate": 4.11590450676888e-06,
|
1807 |
+
"loss": 0.4802,
|
1808 |
+
"step": 300
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 2.15,
|
1812 |
+
"learning_rate": 4.053668236957135e-06,
|
1813 |
+
"loss": 0.4662,
|
1814 |
+
"step": 301
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 2.15,
|
1818 |
+
"learning_rate": 3.991786256339692e-06,
|
1819 |
+
"loss": 0.529,
|
1820 |
+
"step": 302
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 2.16,
|
1824 |
+
"learning_rate": 3.930262251915181e-06,
|
1825 |
+
"loss": 0.5224,
|
1826 |
+
"step": 303
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 2.17,
|
1830 |
+
"learning_rate": 3.869099889353597e-06,
|
1831 |
+
"loss": 0.5176,
|
1832 |
+
"step": 304
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 2.18,
|
1836 |
+
"learning_rate": 3.8083028127779143e-06,
|
1837 |
+
"loss": 0.5094,
|
1838 |
+
"step": 305
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 2.18,
|
1842 |
+
"learning_rate": 3.7478746445469415e-06,
|
1843 |
+
"loss": 0.4926,
|
1844 |
+
"step": 306
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 2.19,
|
1848 |
+
"learning_rate": 3.6878189850395186e-06,
|
1849 |
+
"loss": 0.4941,
|
1850 |
+
"step": 307
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 2.2,
|
1854 |
+
"learning_rate": 3.628139412439993e-06,
|
1855 |
+
"loss": 0.5487,
|
1856 |
+
"step": 308
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 2.2,
|
1860 |
+
"learning_rate": 3.5688394825250193e-06,
|
1861 |
+
"loss": 0.5081,
|
1862 |
+
"step": 309
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 2.21,
|
1866 |
+
"learning_rate": 3.5099227284517145e-06,
|
1867 |
+
"loss": 0.4889,
|
1868 |
+
"step": 310
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 2.22,
|
1872 |
+
"learning_rate": 3.4513926605471504e-06,
|
1873 |
+
"loss": 0.4938,
|
1874 |
+
"step": 311
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 2.23,
|
1878 |
+
"learning_rate": 3.3932527660991877e-06,
|
1879 |
+
"loss": 0.4837,
|
1880 |
+
"step": 312
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 2.23,
|
1884 |
+
"learning_rate": 3.335506509148716e-06,
|
1885 |
+
"loss": 0.4979,
|
1886 |
+
"step": 313
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 2.24,
|
1890 |
+
"learning_rate": 3.2781573302832493e-06,
|
1891 |
+
"loss": 0.4936,
|
1892 |
+
"step": 314
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 2.25,
|
1896 |
+
"learning_rate": 3.221208646431949e-06,
|
1897 |
+
"loss": 0.4766,
|
1898 |
+
"step": 315
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 2.25,
|
1902 |
+
"learning_rate": 3.1646638506620265e-06,
|
1903 |
+
"loss": 0.5223,
|
1904 |
+
"step": 316
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 2.26,
|
1908 |
+
"learning_rate": 3.108526311976574e-06,
|
1909 |
+
"loss": 0.498,
|
1910 |
+
"step": 317
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 2.27,
|
1914 |
+
"learning_rate": 3.0527993751138575e-06,
|
1915 |
+
"loss": 0.4948,
|
1916 |
+
"step": 318
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 2.28,
|
1920 |
+
"learning_rate": 2.997486360348011e-06,
|
1921 |
+
"loss": 0.4607,
|
1922 |
+
"step": 319
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 2.28,
|
1926 |
+
"learning_rate": 2.942590563291219e-06,
|
1927 |
+
"loss": 0.5286,
|
1928 |
+
"step": 320
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 2.29,
|
1932 |
+
"learning_rate": 2.888115254697371e-06,
|
1933 |
+
"loss": 0.5225,
|
1934 |
+
"step": 321
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 2.3,
|
1938 |
+
"learning_rate": 2.8340636802671716e-06,
|
1939 |
+
"loss": 0.4547,
|
1940 |
+
"step": 322
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 2.3,
|
1944 |
+
"learning_rate": 2.780439060454756e-06,
|
1945 |
+
"loss": 0.4879,
|
1946 |
+
"step": 323
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 2.31,
|
1950 |
+
"learning_rate": 2.727244590275834e-06,
|
1951 |
+
"loss": 0.5063,
|
1952 |
+
"step": 324
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 2.32,
|
1956 |
+
"learning_rate": 2.674483439117296e-06,
|
1957 |
+
"loss": 0.5119,
|
1958 |
+
"step": 325
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 2.32,
|
1962 |
+
"learning_rate": 2.622158750548407e-06,
|
1963 |
+
"loss": 0.5264,
|
1964 |
+
"step": 326
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 2.33,
|
1968 |
+
"learning_rate": 2.5702736421334853e-06,
|
1969 |
+
"loss": 0.5035,
|
1970 |
+
"step": 327
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 2.34,
|
1974 |
+
"learning_rate": 2.518831205246174e-06,
|
1975 |
+
"loss": 0.5364,
|
1976 |
+
"step": 328
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 2.35,
|
1980 |
+
"learning_rate": 2.4678345048852326e-06,
|
1981 |
+
"loss": 0.4828,
|
1982 |
+
"step": 329
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 2.35,
|
1986 |
+
"learning_rate": 2.4172865794919477e-06,
|
1987 |
+
"loss": 0.4919,
|
1988 |
+
"step": 330
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 2.36,
|
1992 |
+
"learning_rate": 2.3671904407690704e-06,
|
1993 |
+
"loss": 0.5037,
|
1994 |
+
"step": 331
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 2.37,
|
1998 |
+
"learning_rate": 2.317549073501396e-06,
|
1999 |
+
"loss": 0.5387,
|
2000 |
+
"step": 332
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 2.37,
|
2004 |
+
"learning_rate": 2.268365435377915e-06,
|
2005 |
+
"loss": 0.4866,
|
2006 |
+
"step": 333
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 2.38,
|
2010 |
+
"learning_rate": 2.2196424568156073e-06,
|
2011 |
+
"loss": 0.5168,
|
2012 |
+
"step": 334
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 2.39,
|
2016 |
+
"learning_rate": 2.171383040784819e-06,
|
2017 |
+
"loss": 0.5497,
|
2018 |
+
"step": 335
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 2.4,
|
2022 |
+
"learning_rate": 2.123590062636328e-06,
|
2023 |
+
"loss": 0.4872,
|
2024 |
+
"step": 336
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 2.4,
|
2028 |
+
"learning_rate": 2.076266369930002e-06,
|
2029 |
+
"loss": 0.4733,
|
2030 |
+
"step": 337
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 2.41,
|
2034 |
+
"learning_rate": 2.02941478226516e-06,
|
2035 |
+
"loss": 0.4585,
|
2036 |
+
"step": 338
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 2.42,
|
2040 |
+
"learning_rate": 1.983038091112558e-06,
|
2041 |
+
"loss": 0.5143,
|
2042 |
+
"step": 339
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 2.42,
|
2046 |
+
"learning_rate": 1.9371390596480865e-06,
|
2047 |
+
"loss": 0.5329,
|
2048 |
+
"step": 340
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 2.43,
|
2052 |
+
"learning_rate": 1.8917204225881236e-06,
|
2053 |
+
"loss": 0.4934,
|
2054 |
+
"step": 341
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 2.44,
|
2058 |
+
"learning_rate": 1.8467848860266047e-06,
|
2059 |
+
"loss": 0.5128,
|
2060 |
+
"step": 342
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 2.45,
|
2064 |
+
"learning_rate": 1.8023351272737955e-06,
|
2065 |
+
"loss": 0.5159,
|
2066 |
+
"step": 343
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 2.45,
|
2070 |
+
"learning_rate": 1.7583737946967606e-06,
|
2071 |
+
"loss": 0.5194,
|
2072 |
+
"step": 344
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 2.46,
|
2076 |
+
"learning_rate": 1.7149035075615795e-06,
|
2077 |
+
"loss": 0.5457,
|
2078 |
+
"step": 345
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 2.47,
|
2082 |
+
"learning_rate": 1.6719268558772927e-06,
|
2083 |
+
"loss": 0.4861,
|
2084 |
+
"step": 346
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 2.47,
|
2088 |
+
"learning_rate": 1.6294464002415789e-06,
|
2089 |
+
"loss": 0.4779,
|
2090 |
+
"step": 347
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 2.48,
|
2094 |
+
"learning_rate": 1.587464671688187e-06,
|
2095 |
+
"loss": 0.4923,
|
2096 |
+
"step": 348
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 2.49,
|
2100 |
+
"learning_rate": 1.54598417153615e-06,
|
2101 |
+
"loss": 0.4961,
|
2102 |
+
"step": 349
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 2.5,
|
2106 |
+
"learning_rate": 1.5050073712407354e-06,
|
2107 |
+
"loss": 0.5059,
|
2108 |
+
"step": 350
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 2.5,
|
2112 |
+
"learning_rate": 1.464536712246205e-06,
|
2113 |
+
"loss": 0.504,
|
2114 |
+
"step": 351
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 2.51,
|
2118 |
+
"learning_rate": 1.4245746058403464e-06,
|
2119 |
+
"loss": 0.489,
|
2120 |
+
"step": 352
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 2.52,
|
2124 |
+
"learning_rate": 1.385123433010812e-06,
|
2125 |
+
"loss": 0.4703,
|
2126 |
+
"step": 353
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 2.52,
|
2130 |
+
"learning_rate": 1.3461855443032456e-06,
|
2131 |
+
"loss": 0.5223,
|
2132 |
+
"step": 354
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 2.53,
|
2136 |
+
"learning_rate": 1.3077632596812407e-06,
|
2137 |
+
"loss": 0.4904,
|
2138 |
+
"step": 355
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 2.54,
|
2142 |
+
"learning_rate": 1.2698588683881185e-06,
|
2143 |
+
"loss": 0.4623,
|
2144 |
+
"step": 356
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 2.55,
|
2148 |
+
"learning_rate": 1.2324746288105272e-06,
|
2149 |
+
"loss": 0.5149,
|
2150 |
+
"step": 357
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 2.55,
|
2154 |
+
"learning_rate": 1.1956127683438822e-06,
|
2155 |
+
"loss": 0.4923,
|
2156 |
+
"step": 358
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 2.56,
|
2160 |
+
"learning_rate": 1.1592754832596632e-06,
|
2161 |
+
"loss": 0.5164,
|
2162 |
+
"step": 359
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 2.57,
|
2166 |
+
"learning_rate": 1.1234649385745488e-06,
|
2167 |
+
"loss": 0.5093,
|
2168 |
+
"step": 360
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 2.57,
|
2172 |
+
"learning_rate": 1.0881832679214276e-06,
|
2173 |
+
"loss": 0.4929,
|
2174 |
+
"step": 361
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 2.58,
|
2178 |
+
"learning_rate": 1.0534325734222773e-06,
|
2179 |
+
"loss": 0.5419,
|
2180 |
+
"step": 362
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 2.59,
|
2184 |
+
"learning_rate": 1.0192149255629114e-06,
|
2185 |
+
"loss": 0.5164,
|
2186 |
+
"step": 363
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 2.6,
|
2190 |
+
"learning_rate": 9.855323630696146e-07,
|
2191 |
+
"loss": 0.4707,
|
2192 |
+
"step": 364
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 2.6,
|
2196 |
+
"learning_rate": 9.523868927876889e-07,
|
2197 |
+
"loss": 0.4744,
|
2198 |
+
"step": 365
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 2.61,
|
2202 |
+
"learning_rate": 9.197804895618623e-07,
|
2203 |
+
"loss": 0.4753,
|
2204 |
+
"step": 366
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 2.62,
|
2208 |
+
"learning_rate": 8.87715096118642e-07,
|
2209 |
+
"loss": 0.4882,
|
2210 |
+
"step": 367
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 2.62,
|
2214 |
+
"learning_rate": 8.561926229505601e-07,
|
2215 |
+
"loss": 0.4818,
|
2216 |
+
"step": 368
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 2.63,
|
2220 |
+
"learning_rate": 8.252149482023363e-07,
|
2221 |
+
"loss": 0.4743,
|
2222 |
+
"step": 369
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 2.64,
|
2226 |
+
"learning_rate": 7.947839175589845e-07,
|
2227 |
+
"loss": 0.4877,
|
2228 |
+
"step": 370
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 2.65,
|
2232 |
+
"learning_rate": 7.649013441358466e-07,
|
2233 |
+
"loss": 0.5093,
|
2234 |
+
"step": 371
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 2.65,
|
2238 |
+
"learning_rate": 7.355690083705547e-07,
|
2239 |
+
"loss": 0.4711,
|
2240 |
+
"step": 372
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 2.66,
|
2244 |
+
"learning_rate": 7.067886579169625e-07,
|
2245 |
+
"loss": 0.477,
|
2246 |
+
"step": 373
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 2.67,
|
2250 |
+
"learning_rate": 6.78562007541006e-07,
|
2251 |
+
"loss": 0.4992,
|
2252 |
+
"step": 374
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 2.67,
|
2256 |
+
"learning_rate": 6.508907390185504e-07,
|
2257 |
+
"loss": 0.4993,
|
2258 |
+
"step": 375
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 2.68,
|
2262 |
+
"learning_rate": 6.237765010351715e-07,
|
2263 |
+
"loss": 0.466,
|
2264 |
+
"step": 376
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 2.69,
|
2268 |
+
"learning_rate": 5.972209090879389e-07,
|
2269 |
+
"loss": 0.4727,
|
2270 |
+
"step": 377
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 2.7,
|
2274 |
+
"learning_rate": 5.71225545389158e-07,
|
2275 |
+
"loss": 0.4927,
|
2276 |
+
"step": 378
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 2.7,
|
2280 |
+
"learning_rate": 5.457919587720961e-07,
|
2281 |
+
"loss": 0.5099,
|
2282 |
+
"step": 379
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 2.71,
|
2286 |
+
"learning_rate": 5.209216645987036e-07,
|
2287 |
+
"loss": 0.5217,
|
2288 |
+
"step": 380
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 2.72,
|
2292 |
+
"learning_rate": 4.966161446693329e-07,
|
2293 |
+
"loss": 0.5118,
|
2294 |
+
"step": 381
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 2.72,
|
2298 |
+
"learning_rate": 4.728768471344425e-07,
|
2299 |
+
"loss": 0.5118,
|
2300 |
+
"step": 382
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 2.73,
|
2304 |
+
"learning_rate": 4.4970518640831687e-07,
|
2305 |
+
"loss": 0.5028,
|
2306 |
+
"step": 383
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 2.74,
|
2310 |
+
"learning_rate": 4.271025430847986e-07,
|
2311 |
+
"loss": 0.4986,
|
2312 |
+
"step": 384
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 2.75,
|
2316 |
+
"learning_rate": 4.0507026385502747e-07,
|
2317 |
+
"loss": 0.4744,
|
2318 |
+
"step": 385
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 2.75,
|
2322 |
+
"learning_rate": 3.836096614271989e-07,
|
2323 |
+
"loss": 0.4928,
|
2324 |
+
"step": 386
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 2.76,
|
2328 |
+
"learning_rate": 3.6272201444836006e-07,
|
2329 |
+
"loss": 0.467,
|
2330 |
+
"step": 387
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 2.77,
|
2334 |
+
"learning_rate": 3.424085674282229e-07,
|
2335 |
+
"loss": 0.4756,
|
2336 |
+
"step": 388
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 2.77,
|
2340 |
+
"learning_rate": 3.226705306650113e-07,
|
2341 |
+
"loss": 0.5302,
|
2342 |
+
"step": 389
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 2.78,
|
2346 |
+
"learning_rate": 3.0350908017335423e-07,
|
2347 |
+
"loss": 0.4687,
|
2348 |
+
"step": 390
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 2.79,
|
2352 |
+
"learning_rate": 2.8492535761421635e-07,
|
2353 |
+
"loss": 0.4699,
|
2354 |
+
"step": 391
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 2.8,
|
2358 |
+
"learning_rate": 2.6692047022687684e-07,
|
2359 |
+
"loss": 0.472,
|
2360 |
+
"step": 392
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 2.8,
|
2364 |
+
"learning_rate": 2.494954907629565e-07,
|
2365 |
+
"loss": 0.5102,
|
2366 |
+
"step": 393
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 2.81,
|
2370 |
+
"learning_rate": 2.3265145742250694e-07,
|
2371 |
+
"loss": 0.4985,
|
2372 |
+
"step": 394
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 2.82,
|
2376 |
+
"learning_rate": 2.1638937379214852e-07,
|
2377 |
+
"loss": 0.4999,
|
2378 |
+
"step": 395
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 2.82,
|
2382 |
+
"learning_rate": 2.0071020878527857e-07,
|
2383 |
+
"loss": 0.4821,
|
2384 |
+
"step": 396
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 2.83,
|
2388 |
+
"learning_rate": 1.8561489658433963e-07,
|
2389 |
+
"loss": 0.5049,
|
2390 |
+
"step": 397
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 2.84,
|
2394 |
+
"learning_rate": 1.711043365851639e-07,
|
2395 |
+
"loss": 0.4672,
|
2396 |
+
"step": 398
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 2.85,
|
2400 |
+
"learning_rate": 1.5717939334338184e-07,
|
2401 |
+
"loss": 0.5159,
|
2402 |
+
"step": 399
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 2.85,
|
2406 |
+
"learning_rate": 1.4384089652291544e-07,
|
2407 |
+
"loss": 0.4481,
|
2408 |
+
"step": 400
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 2.86,
|
2412 |
+
"learning_rate": 1.310896408465401e-07,
|
2413 |
+
"loss": 0.4825,
|
2414 |
+
"step": 401
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 2.87,
|
2418 |
+
"learning_rate": 1.1892638604853901e-07,
|
2419 |
+
"loss": 0.4974,
|
2420 |
+
"step": 402
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 2.87,
|
2424 |
+
"learning_rate": 1.0735185682943628e-07,
|
2425 |
+
"loss": 0.5136,
|
2426 |
+
"step": 403
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 2.88,
|
2430 |
+
"learning_rate": 9.636674281281788e-08,
|
2431 |
+
"loss": 0.4991,
|
2432 |
+
"step": 404
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 2.89,
|
2436 |
+
"learning_rate": 8.597169850424136e-08,
|
2437 |
+
"loss": 0.4636,
|
2438 |
+
"step": 405
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 2.9,
|
2442 |
+
"learning_rate": 7.616734325224473e-08,
|
2443 |
+
"loss": 0.5009,
|
2444 |
+
"step": 406
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 2.9,
|
2448 |
+
"learning_rate": 6.69542612114371e-08,
|
2449 |
+
"loss": 0.4814,
|
2450 |
+
"step": 407
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 2.91,
|
2454 |
+
"learning_rate": 5.833300130770436e-08,
|
2455 |
+
"loss": 0.4765,
|
2456 |
+
"step": 408
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 2.92,
|
2460 |
+
"learning_rate": 5.030407720549413e-08,
|
2461 |
+
"loss": 0.4909,
|
2462 |
+
"step": 409
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 2.92,
|
2466 |
+
"learning_rate": 4.286796727721476e-08,
|
2467 |
+
"loss": 0.4783,
|
2468 |
+
"step": 410
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 2.93,
|
2472 |
+
"learning_rate": 3.602511457473479e-08,
|
2473 |
+
"loss": 0.493,
|
2474 |
+
"step": 411
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.94,
|
2478 |
+
"learning_rate": 2.9775926802984022e-08,
|
2479 |
+
"loss": 0.4648,
|
2480 |
+
"step": 412
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 2.95,
|
2484 |
+
"learning_rate": 2.4120776295659675e-08,
|
2485 |
+
"loss": 0.4917,
|
2486 |
+
"step": 413
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 2.95,
|
2490 |
+
"learning_rate": 1.905999999304853e-08,
|
2491 |
+
"loss": 0.4844,
|
2492 |
+
"step": 414
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 2.96,
|
2496 |
+
"learning_rate": 1.4593899421943003e-08,
|
2497 |
+
"loss": 0.4925,
|
2498 |
+
"step": 415
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 2.97,
|
2502 |
+
"learning_rate": 1.0722740677685529e-08,
|
2503 |
+
"loss": 0.4803,
|
2504 |
+
"step": 416
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 2.97,
|
2508 |
+
"learning_rate": 7.4467544083067776e-09,
|
2509 |
+
"loss": 0.4579,
|
2510 |
+
"step": 417
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 2.98,
|
2514 |
+
"learning_rate": 4.766135800785554e-09,
|
2515 |
+
"loss": 0.4739,
|
2516 |
+
"step": 418
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 2.99,
|
2520 |
+
"learning_rate": 2.68104456942031e-09,
|
2521 |
+
"loss": 0.5126,
|
2522 |
+
"step": 419
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 3.0,
|
2526 |
+
"learning_rate": 1.1916049463134293e-09,
|
2527 |
+
"loss": 0.4761,
|
2528 |
+
"step": 420
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 3.0,
|
2532 |
+
"step": 420,
|
2533 |
+
"total_flos": 1.7711353317818368e+17,
|
2534 |
+
"train_loss": 0.6881538674944923,
|
2535 |
+
"train_runtime": 11850.5144,
|
2536 |
+
"train_samples_per_second": 18.172,
|
2537 |
+
"train_steps_per_second": 0.035
|
2538 |
+
}
|
2539 |
+
],
|
2540 |
+
"max_steps": 420,
|
2541 |
+
"num_train_epochs": 3,
|
2542 |
+
"total_flos": 1.7711353317818368e+17,
|
2543 |
+
"trial_name": null,
|
2544 |
+
"trial_params": null
|
2545 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d393098e52facaab695c8a5a28ff25d2c56b92016e757bdb1c154c1835d15399
|
3 |
+
size 3707
|