--- base_model: unsloth/qwen2.5-14b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en datasets: - qingy2024/QwQ-LongCoT-Verified-130K --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/QwQ-14B-Math-v0.2-GGUF This is quantized version of [qingy2024/QwQ-14B-Math-v0.2](https://huggingface.co/qingy2024/QwQ-14B-Math-v0.2) created using llama.cpp # Original Model Card # Uploaded model - **Developed by:** qingy2024 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-bnb-4bit This model is a fine-tuned version of **Qwen 2.5-14B**, trained on QwQ 32B Preview's responses to questions from the **NuminaMathCoT** dataset. **Note:** This model uses the standard ChatML template. At 500 steps, the loss was plateauing so I decided to stop training to prevent excessive overfitting. --- #### Training Details - **Base Model**: Qwen 2.5-14B - **Fine-Tuning Dataset**: Verified subset of **NuminaMathCoT** using Qwen 2.5 3B Instruct as a judge. (the `sharegpt-verified-cleaned` subset from my dataset). - **QLoRA Configuration**: - **Rank**: 32 - **Rank Stabilization**: Enabled - **Optimization Settings**: - Batch Size: 8 - Gradient Accumulation Steps: 2 (Effective Batch Size: 16) - Warm-Up Steps: 5 - Weight Decay: 0.01 - **Training Steps**: 500 steps - **Hardware Information**: A100-80GB --- [](https://github.com/unslothai/unsloth)