File size: 4,009 Bytes
a7758d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/emmanuelkoupoh/Documents/Github/LP_NLP/venv/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForSequenceClassification\n",
    "from transformers import TFAutoModelForSequenceClassification\n",
    "from transformers import AutoTokenizer, AutoConfig\n",
    "import numpy as np\n",
    "from scipy.special import softmax"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')\n",
    "\n",
    "model_path = f\"test_trainer/checkpoint-1000/\"\n",
    "config = AutoConfig.from_pretrained(model_path)\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Preprocess text (username and link placeholders)\n",
    "def preprocess(text):\n",
    "    new_text = []\n",
    "    for t in text.split(\" \"):\n",
    "        t = '@user' if t.startswith('@') and len(t) > 1 else t\n",
    "        t = 'http' if t.startswith('http') else t\n",
    "        new_text.append(t)\n",
    "    return \" \".join(new_text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Input preprocessing\n",
    "text = \"Covid cases are increasing fast!\"\n",
    "text = preprocess(text)\n",
    "\n",
    "# PyTorch-based models\n",
    "encoded_input = tokenizer(text, return_tensors='pt')\n",
    "output = model(**encoded_input)\n",
    "scores = output[0][0].detach().numpy()\n",
    "scores = softmax(scores)\n",
    "\n",
    "# TensorFlow-based models\n",
    "# model = TFAutoModelForSequenceClassification.from_pretrained(model_path)\n",
    "# model.save_pretrained(model_path)\n",
    "# text = \"Covid cases are increasing fast!\"\n",
    "# encoded_input = tokenizer(text, return_tensors='tf')\n",
    "# output = model(encoded_input)\n",
    "# scores = output[0][0].numpy()\n",
    "# scores = softmax(scores)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1) NEUTRAL 0.9564\n",
      "2) POSITIVE 0.0389\n",
      "3) NEGATIVE 0.0047\n"
     ]
    }
   ],
   "source": [
    "# Print labels and scores\n",
    "ranking = np.argsort(scores)\n",
    "ranking = ranking[::-1]\n",
    "for i in range(scores.shape[0]):\n",
    "    l = config.id2label[ranking[i]]\n",
    "    s = scores[ranking[i]]\n",
    "    print(f\"{i+1}) {l} {np.round(float(s), 4)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.6 ('venv': venv)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "1ab24538aa0da4b2d8c48eaca591ff7ffc54671225fb0511b432fd9e26a098ba"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}