File size: 14,604 Bytes
ce1512e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Generation support."""
from typing import Tuple, List, Union, Iterable
import numpy as np
import torch
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
from transformers import logging
from transformers.generation import LogitsProcessor
logger = logging.get_logger(__name__)
# Types.
HistoryType = List[Tuple[str, str]]
TokensType = List[int]
BatchTokensType = List[List[int]]
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
for tokens in batch:
context_length = len(tokens)
if context_length < seq_length:
tokens.extend([pad_id] * (seq_length - context_length))
return batch
def get_ltor_masks_and_position_ids(
data,
eod_token,
reset_position_ids,
reset_attention_mask,
eod_mask_loss,
):
"""Build masks and position id for left to right model."""
# Extract batch size and sequence length.
micro_batch_size, seq_length = data.size()
# Attention mask (lower triangular).
if reset_attention_mask:
att_mask_batch = micro_batch_size
else:
att_mask_batch = 1
attention_mask = torch.tril(
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
).view(att_mask_batch, 1, seq_length, seq_length)
# Loss mask.
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
if eod_mask_loss:
loss_mask[data == eod_token] = 0.0
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
# We need to clone as the ids will be modifed based on batch index.
if reset_position_ids:
position_ids = position_ids.clone()
if reset_position_ids or reset_attention_mask:
# Loop through the batches:
for b in range(micro_batch_size):
# Find indecies where EOD token is.
eod_index = position_ids[b, data[b] == eod_token]
# Detach indecies from positions if going to modify positions.
if reset_position_ids:
eod_index = eod_index.clone()
# Loop through EOD indecies:
prev_index = 0
for j in range(eod_index.size()[0]):
i = eod_index[j]
# Mask attention loss.
if reset_attention_mask:
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
# Reset positions.
if reset_position_ids:
position_ids[b, (i + 1) :] -= i + 1 - prev_index
prev_index = i + 1
# Convert attention mask to binary:
attention_mask = attention_mask < 0.5
return attention_mask, loss_mask, position_ids
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
"""Generate batch from context tokens."""
# Move to GPU.
tokens = context_tokens.contiguous().to(context_tokens.device)
# Get the attention mask and postition ids.
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
tokens,
eod_id,
reset_position_ids=False,
reset_attention_mask=False,
eod_mask_loss=False,
)
return tokens, attention_mask, position_ids
def get_stop_words_ids(chat_format, tokenizer):
if chat_format == "raw":
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
elif chat_format == "chatml":
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return stop_words_ids
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []
if chat_format == "chatml":
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(
role, allowed_special=set()
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response
)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = (
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
)
current_context_size = (
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
elif chat_format == "raw":
raw_text = query
context_tokens = tokenizer.encode(raw_text)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return raw_text, context_tokens
def _decode_default(
tokens: List[int],
*,
stop_words: List[str],
eod_words: List[str],
tokenizer: PreTrainedTokenizer,
raw_text_len: int,
verbose: bool = False,
return_end_reason: bool = False,
errors: str='replace',
):
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
if verbose:
print("\nRaw Generate: ", trim_decode_tokens)
end_reason = f"Gen length {len(tokens)}"
for stop_word in stop_words:
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
for eod_word in eod_words:
if eod_word in trim_decode_tokens:
end_reason = f"Gen {eod_word!r}"
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
trim_decode_tokens = trim_decode_tokens.strip()
if verbose:
print("\nEnd Reason:", end_reason)
print("\nGenerate: ", trim_decode_tokens)
if return_end_reason:
return trim_decode_tokens, end_reason
else:
return trim_decode_tokens
def _decode_chatml(
tokens: List[int],
*,
stop_words: List[str],
eod_token_ids: List[int],
tokenizer: PreTrainedTokenizer,
raw_text_len: int,
context_length: int,
verbose: bool = False,
return_end_reason: bool = False,
errors: str='replace'
):
end_reason = f"Gen length {len(tokens)}"
eod_token_idx = context_length
for eod_token_idx in range(context_length, len(tokens)):
if tokens[eod_token_idx] in eod_token_ids:
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
break
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
if verbose:
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
print("\nRaw Generate:", trim_decode_tokens)
print("\nEnd Reason:", end_reason)
for stop_word in stop_words:
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
trim_decode_tokens = trim_decode_tokens.strip()
if verbose:
print("\nGenerate:", trim_decode_tokens)
if return_end_reason:
return trim_decode_tokens, end_reason
else:
return trim_decode_tokens
def decode_tokens(
tokens: Union[torch.LongTensor, TokensType],
tokenizer: PreTrainedTokenizer,
raw_text_len: int,
context_length: int,
chat_format: str,
verbose: bool = False,
return_end_reason: bool = False,
errors: str="replace",
) -> str:
if torch.is_tensor(tokens):
tokens = tokens.cpu().numpy().tolist()
if chat_format == "chatml":
return _decode_chatml(
tokens,
stop_words=[],
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
tokenizer=tokenizer,
raw_text_len=raw_text_len,
context_length=context_length,
verbose=verbose,
return_end_reason=return_end_reason,
errors=errors,
)
elif chat_format == "raw":
return _decode_default(
tokens,
stop_words=["<|endoftext|>"],
eod_words=["<|endoftext|>"],
tokenizer=tokenizer,
raw_text_len=raw_text_len,
verbose=verbose,
return_end_reason=return_end_reason,
errors=errors,
)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
class StopWordsLogitsProcessor(LogitsProcessor):
"""
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
Args:
stop_words_ids (:obj:`List[List[int]]`):
List of list of token ids of stop ids. In order to get the tokens of the words
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
add_prefix_space=True).input_ids`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
raise ValueError(
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
)
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
raise ValueError(
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
)
if any(
any(
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
for token_id in stop_word_ids
)
for stop_word_ids in stop_words_ids
):
raise ValueError(
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
)
self.stop_words_ids = list(
filter(
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
)
)
self.eos_token_id = eos_token_id
for stop_token_seq in self.stop_words_ids:
assert (
len(stop_token_seq) > 0
), "Stop words token sequences {} cannot have an empty list".format(
stop_words_ids
)
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
stopped_samples = self._calc_stopped_samples(input_ids)
for i, should_stop in enumerate(stopped_samples):
if should_stop:
scores[i, self.eos_token_id] = float(2**15)
return scores
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
elif len(tokens) > len(prev_tokens):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
elif prev_tokens[-len(tokens) :].tolist() == tokens:
# if tokens match
return True
else:
return False
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
stopped_samples = []
for prev_input_ids_slice in prev_input_ids:
match = False
for stop_token_seq in self.stop_words_ids:
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
# if tokens do not match continue
match = True
break
stopped_samples.append(match)
return stopped_samples
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
"""This function has been mostly taken from huggingface conversational
ai code at
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
conversational-ai-with-transfer-learning-2d818ac26313"""
if top_k > 0:
# Remove all tokens with a probability less than the
# last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
# Cconvert to 1D
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token
# above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
for i in range(sorted_indices.size(0)):
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
logits[i][indices_to_remove] = filter_value
return logits
def switch(val1, val2, boolean):
boolean = boolean.type_as(val1)
return (1 - boolean) * val1 + boolean * val2
|