RtwC commited on
Commit
56cb77e
·
1 Parent(s): 77645f3

End of training

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -1,6 +1,5 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -18,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # berttest2
20
 
21
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.2938
24
- - Precision: 0.4447
25
- - Recall: 0.3059
26
- - F1: 0.3625
27
- - Accuracy: 0.9212
28
 
29
  ## Model description
30
 
@@ -55,9 +54,9 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.3339 | 1.0 | 2609 | 0.3198 | 0.4350 | 0.2483 | 0.3161 | 0.9150 |
59
- | 0.3034 | 2.0 | 5218 | 0.2974 | 0.4494 | 0.2851 | 0.3489 | 0.9203 |
60
- | 0.2879 | 3.0 | 7827 | 0.2938 | 0.4447 | 0.3059 | 0.3625 | 0.9212 |
61
 
62
 
63
  ### Framework versions
 
1
  ---
2
+ base_model: bert-base-chinese
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
17
 
18
  # berttest2
19
 
20
+ This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.0206
23
+ - Precision: 0.9610
24
+ - Recall: 0.9653
25
+ - F1: 0.9631
26
+ - Accuracy: 0.9956
27
 
28
  ## Model description
29
 
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.028 | 1.0 | 2609 | 0.0225 | 0.9385 | 0.9350 | 0.9368 | 0.9932 |
58
+ | 0.011 | 2.0 | 5218 | 0.0182 | 0.9542 | 0.9592 | 0.9567 | 0.9951 |
59
+ | 0.0044 | 3.0 | 7827 | 0.0206 | 0.9610 | 0.9653 | 0.9631 | 0.9956 |
60
 
61
 
62
  ### Framework versions