--- language: - sr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - espnet/yodas metrics: - wer model-index: - name: Whisper Small Sr Yodas results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yodas type: espnet/yodas config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.12195981670778992 --- # Whisper Small Sr Yodas This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Yodas dataset. It achieves the following results on the evaluation set: - Loss: 0.3584 - Wer Ortho: 0.2328 - Wer: 0.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:| | 0.6958 | 0.49 | 1000 | 0.2114 | 0.2528 | 0.1563 | | 0.5941 | 0.98 | 2000 | 0.1857 | 0.2214 | 0.1269 | | 0.3985 | 1.46 | 3000 | 0.1729 | 0.2106 | 0.1167 | | 0.4187 | 1.95 | 4000 | 0.1745 | 0.2120 | 0.1147 | | 0.3446 | 2.44 | 5000 | 0.1770 | 0.2074 | 0.1139 | | 0.2992 | 2.93 | 6000 | 0.1710 | 0.2048 | 0.1061 | | 0.2074 | 3.42 | 7000 | 0.1887 | 0.2090 | 0.1123 | | 0.1958 | 3.91 | 8000 | 0.1871 | 0.2136 | 0.1131 | | 0.1707 | 4.39 | 9000 | 0.2069 | 0.2230 | 0.1126 | | 0.1403 | 4.88 | 10000 | 0.2092 | 0.2138 | 0.1110 | | 0.0871 | 5.37 | 11000 | 0.2345 | 0.2216 | 0.1161 | | 0.0856 | 5.86 | 12000 | 0.2384 | 0.2281 | 0.1161 | | 0.0496 | 6.35 | 13000 | 0.2657 | 0.2327 | 0.1211 | | 0.0542 | 6.84 | 14000 | 0.2760 | 0.2346 | 0.1198 | | 0.0274 | 7.32 | 15000 | 0.3024 | 0.2304 | 0.1218 | | 0.0281 | 7.81 | 16000 | 0.3134 | 0.2357 | 0.1216 | | 0.0151 | 8.3 | 17000 | 0.3328 | 0.2276 | 0.1188 | | 0.0165 | 8.79 | 18000 | 0.3417 | 0.2348 | 0.1220 | | 0.0094 | 9.28 | 19000 | 0.3545 | 0.2318 | 0.1221 | | 0.0125 | 9.77 | 20000 | 0.3584 | 0.2328 | 0.1220 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.1