--- language: - ja license: apache-2.0 base_model: openai/whisper-small tags: - testing - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small JA Test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: ja split: None args: 'config: ja, split: test' metrics: - name: Wer type: wer value: 83.60284605433377 --- # Whisper Small JA Test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Wer: 83.6028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2417 | 1.02 | 1000 | 0.5194 | 85.4463 | | 0.107 | 2.04 | 2000 | 0.5127 | 83.2471 | | 0.0515 | 3.05 | 3000 | 0.5249 | 83.8616 | | 0.0306 | 4.07 | 4000 | 0.5351 | 83.6028 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2