Update README.md
Browse files
README.md
CHANGED
@@ -54,3 +54,240 @@ or
|
|
54 |
```
|
55 |
./llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
|
56 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
```
|
55 |
./llama-server --hf-repo Svngoku/ReaderLM-v2-Q8_0-GGUF --hf-file readerlm-v2-q8_0.gguf -c 2048
|
56 |
```
|
57 |
+
|
58 |
+
## VLLM Inference
|
59 |
+
|
60 |
+
```py
|
61 |
+
# -*- coding: utf-8 -*-
|
62 |
+
"""Untitled64.ipynb
|
63 |
+
|
64 |
+
Automatically generated by Colab.
|
65 |
+
|
66 |
+
Original file is located at
|
67 |
+
https://colab.research.google.com/drive/1hVqCTm6XLJmrOjkaIYLHXgOTg2ffnhue
|
68 |
+
"""
|
69 |
+
|
70 |
+
!pip install vllm
|
71 |
+
|
72 |
+
model_name = 'Svngoku/ReaderLM-v2-Q8_0-GGUF' # @param ["jinaai/ReaderLM-v2", "jinaai/reader-lm-1.5b", "Svngoku/ReaderLM-v2-Q8_0-GGUF"]
|
73 |
+
max_model_len = 256000 # @param {type:"integer"}
|
74 |
+
# @markdown ---
|
75 |
+
# @markdown ### SamplingParams:
|
76 |
+
|
77 |
+
top_k = 1 # @param {type:"integer"}
|
78 |
+
temperature = 0 # @param {type:"slider", min:0, max:1, step:0.1}
|
79 |
+
repetition_penalty = 1.05 # @param {type:"number"}
|
80 |
+
presence_penalty = 0.25 # @param {type:"slider", min:0, max:1, step:0.1}
|
81 |
+
max_tokens = 8192 # @param {type:"integer"}
|
82 |
+
# @markdown ---
|
83 |
+
|
84 |
+
from vllm import SamplingParams
|
85 |
+
|
86 |
+
sampling_params = SamplingParams(temperature=temperature, top_k=top_k, presence_penalty=presence_penalty, repetition_penalty=repetition_penalty, max_tokens=max_tokens)
|
87 |
+
|
88 |
+
print('sampling_params', sampling_params)
|
89 |
+
|
90 |
+
!wget https://huggingface.co/Svngoku/ReaderLM-v2-Q8_0-GGUF/resolve/main/readerlm-v2-q8_0.gguf
|
91 |
+
|
92 |
+
!wget https://huggingface.co/jinaai/ReaderLM-v2/resolve/main/tokenizer.json
|
93 |
+
|
94 |
+
!vllm serve /content/readerlm-v2-q8_0.gguf --tokenizer /content/tokenizer.json
|
95 |
+
|
96 |
+
from vllm import LLM
|
97 |
+
|
98 |
+
llm = LLM(
|
99 |
+
model="/content/readerlm-v2-q8_0.gguf",
|
100 |
+
max_model_len=max_model_len,
|
101 |
+
tokenizer='jinaai/ReaderLM-v2'
|
102 |
+
)
|
103 |
+
|
104 |
+
# @title ## Specify a URL as input{"run":"auto","vertical-output":true}
|
105 |
+
|
106 |
+
import re
|
107 |
+
import requests
|
108 |
+
from IPython.display import display, Markdown
|
109 |
+
|
110 |
+
def display_header(text):
|
111 |
+
display(Markdown(f'**{text}**'))
|
112 |
+
|
113 |
+
def display_rendered_md(text):
|
114 |
+
# for mimic "Reading mode" in Safari/Firefox
|
115 |
+
display(Markdown(text))
|
116 |
+
|
117 |
+
def display_content(text):
|
118 |
+
display(Markdown(text))
|
119 |
+
|
120 |
+
def get_html_content(url):
|
121 |
+
api_url = f'https://r.jina.ai/{url}'
|
122 |
+
headers = {'X-Return-Format': 'html'}
|
123 |
+
try:
|
124 |
+
response = requests.get(api_url, headers=headers, timeout=10)
|
125 |
+
response.raise_for_status()
|
126 |
+
return response.text
|
127 |
+
except requests.exceptions.RequestException as e:
|
128 |
+
return f"error: {str(e)}"
|
129 |
+
|
130 |
+
|
131 |
+
def get_html_content(url):
|
132 |
+
api_url = f'https://r.jina.ai/{url}'
|
133 |
+
headers = {'X-Return-Format': 'html'}
|
134 |
+
try:
|
135 |
+
response = requests.get(api_url, headers=headers, timeout=10)
|
136 |
+
response.raise_for_status()
|
137 |
+
return response.text
|
138 |
+
except requests.exceptions.RequestException as e:
|
139 |
+
return f"error: {str(e)}"
|
140 |
+
|
141 |
+
def create_prompt(text: str, tokenizer = None, instruction: str = None, schema: str = None) -> str:
|
142 |
+
"""
|
143 |
+
Create a prompt for the model with optional instruction and JSON schema.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
text (str): The input HTML text
|
147 |
+
tokenizer: The tokenizer to use
|
148 |
+
instruction (str, optional): Custom instruction for the model
|
149 |
+
schema (str, optional): JSON schema for structured extraction
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
str: The formatted prompt
|
153 |
+
"""
|
154 |
+
if not tokenizer:
|
155 |
+
tokenizer = llm.get_tokenizer()
|
156 |
+
|
157 |
+
|
158 |
+
if not instruction:
|
159 |
+
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
|
160 |
+
|
161 |
+
if schema:
|
162 |
+
instruction = 'Extract the specified information from a list of news threads and present it in a structured JSON format.'
|
163 |
+
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
|
164 |
+
else:
|
165 |
+
prompt = f"{instruction}\n```html\n{text}\n```"
|
166 |
+
|
167 |
+
messages = [
|
168 |
+
{
|
169 |
+
"role": "user",
|
170 |
+
"content": prompt,
|
171 |
+
}
|
172 |
+
]
|
173 |
+
|
174 |
+
return tokenizer.apply_chat_template(
|
175 |
+
messages, tokenize=False, add_generation_prompt=True
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
# (REMOVE <SCRIPT> to </script> and variations)
|
181 |
+
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' # mach any char zero or more times
|
182 |
+
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
183 |
+
|
184 |
+
# (REMOVE HTML <STYLE> to </style> and variations)
|
185 |
+
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' # mach any char zero or more times
|
186 |
+
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
187 |
+
|
188 |
+
# (REMOVE HTML <META> to </meta> and variations)
|
189 |
+
META_PATTERN = r'<[ ]*meta.*?>' # mach any char zero or more times
|
190 |
+
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
191 |
+
|
192 |
+
# (REMOVE HTML COMMENTS <!-- to --> and variations)
|
193 |
+
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' # mach any char zero or more times
|
194 |
+
# text = re.sub(pattern, '', text, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
195 |
+
|
196 |
+
# (REMOVE HTML LINK <LINK> to </link> and variations)
|
197 |
+
LINK_PATTERN = r'<[ ]*link.*?>' # mach any char zero or more times
|
198 |
+
|
199 |
+
# (REPLACE base64 images)
|
200 |
+
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
|
201 |
+
|
202 |
+
# (REPLACE <svg> to </svg> and variations)
|
203 |
+
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'
|
204 |
+
|
205 |
+
|
206 |
+
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
|
207 |
+
return re.sub(
|
208 |
+
SVG_PATTERN,
|
209 |
+
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
|
210 |
+
html,
|
211 |
+
flags=re.DOTALL,
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
|
216 |
+
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
|
217 |
+
|
218 |
+
|
219 |
+
def has_base64_images(text: str) -> bool:
|
220 |
+
base64_content_pattern = r'data:image/[^;]+;base64,[^"]+'
|
221 |
+
return bool(re.search(base64_content_pattern, text, flags=re.DOTALL))
|
222 |
+
|
223 |
+
|
224 |
+
def has_svg_components(text: str) -> bool:
|
225 |
+
return bool(re.search(SVG_PATTERN, text, flags=re.DOTALL))
|
226 |
+
|
227 |
+
|
228 |
+
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
|
229 |
+
html = re.sub(SCRIPT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
230 |
+
html = re.sub(STYLE_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
231 |
+
html = re.sub(META_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
232 |
+
html = re.sub(COMMENT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
233 |
+
html = re.sub(LINK_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
234 |
+
|
235 |
+
if clean_svg:
|
236 |
+
html = replace_svg(html)
|
237 |
+
|
238 |
+
if clean_base64:
|
239 |
+
html = replace_base64_images(html)
|
240 |
+
|
241 |
+
return html
|
242 |
+
|
243 |
+
url = "https://news.ycombinator.com/" # @param {type:"string"}
|
244 |
+
|
245 |
+
|
246 |
+
print(f'We will use Jina Reader to fetch the **raw HTML** from: {url}')
|
247 |
+
|
248 |
+
html = get_html_content(url)
|
249 |
+
|
250 |
+
html = clean_html(html, clean_svg=True, clean_base64=True)
|
251 |
+
|
252 |
+
prompt = create_prompt(html)
|
253 |
+
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
|
254 |
+
|
255 |
+
print(result)
|
256 |
+
|
257 |
+
import json
|
258 |
+
|
259 |
+
schema = {
|
260 |
+
"type": "object",
|
261 |
+
"properties": {
|
262 |
+
"title": {"type": "string", "description": "News thread title"},
|
263 |
+
"url": {"type": "string", "description": "Thread URL"},
|
264 |
+
"summary": {"type": "string", "description": "Article summary"},
|
265 |
+
"keywords": {"type": "list", "description": "Descriptive keywords"},
|
266 |
+
"author": {"type": "string", "description": "Thread author"},
|
267 |
+
"comments": {"type": "integer", "description": "Comment count"}
|
268 |
+
},
|
269 |
+
"required": ["title", "url", "date", "points", "author", "comments"]
|
270 |
+
}
|
271 |
+
|
272 |
+
prompt = create_prompt(html, schema=json.dumps(schema, indent=2))
|
273 |
+
|
274 |
+
|
275 |
+
result = llm.generate(prompt, sampling_params=sampling_params)[0].outputs[0].text.strip()
|
276 |
+
print(result)
|
277 |
+
|
278 |
+
from vllm.distributed.parallel_state import destroy_model_parallel, destroy_distributed_environment
|
279 |
+
import gc
|
280 |
+
import os
|
281 |
+
import torch
|
282 |
+
|
283 |
+
destroy_model_parallel()
|
284 |
+
destroy_distributed_environment()
|
285 |
+
del llm.llm_engine.model_executor.driver_worker
|
286 |
+
del llm.llm_engine.model_executor
|
287 |
+
del llm
|
288 |
+
gc.collect()
|
289 |
+
torch.cuda.empty_cache()
|
290 |
+
|
291 |
+
print(f"cuda memory: {torch.cuda.memory_allocated() // 1024 // 1024}MB")
|
292 |
+
|
293 |
+
```
|