--- library_name: transformers license: apache-2.0 datasets: - lmms-lab/textvqa language: - en tags: - multimodal - vision - image-text-to-text --- # Idefics2-8B-SFT ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/TIxlOOLWmd_k_0grtzejN.jpeg) Idefics2-8B-SFT is SFT fine-tune of [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) on 35k [TextVQA dataset](https://huggingface.co/datasets/textvqa). Training was performed on RTX A5000 for 10 hrs. Wandb report: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/SjeZW06TBY2RmXPHVzxF1.png) This fine-tuned model achieves a Levenshtein score of 82.29%. # Model Summary - **Developed by:** Hugging Face - **Model type:** Multi-modal model (image+text) - **Language(s) (NLP):** en - **License:** Apache 2.0 - **Parent Models:** [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) and [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ## 💻 Usage ```python processor = AutoProcessor.from_pretrained("Syed-Hasan-8503/Idefics2-8B-SFT") model = AutoModelForVision2Seq.from_pretrained("Syed-Hasan-8503/Idefics2-8B-SFT",).to(DEVICE) # Create inputs messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What do we see in this image?"}, ] }, { "role": "assistant", "content": [ {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."}, ] }, { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "And how about this image?"}, ] }, ] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt") inputs = {k: v.to(DEVICE) for k, v in inputs.items()} # Generate generated_ids = model.generate(**inputs, max_new_tokens=500) generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) print(generated_texts) # ['User: What do we see in this image? \nAssistant: In this image, we can see the city of New York, and more specifically the Statue of Liberty. \nUser: And how about this image? \nAssistant: In this image we can see buildings, trees, lights, water and sky.'] ``` ## 🏆 Evaluation Coming Soon!