TheBloke commited on
Commit
bbd3f4c
·
1 Parent(s): 7d38987

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -65
README.md CHANGED
@@ -33,19 +33,24 @@ quantized_by: TheBloke
33
  - Model creator: [Bud](https://huggingface.co/budecosystem)
34
  - Original model: [GenZ 70B](https://huggingface.co/budecosystem/genz-70b)
35
 
 
36
  ## Description
37
 
38
  This repo contains GPTQ model files for [Bud's GenZ 70B](https://huggingface.co/budecosystem/genz-70b).
39
 
40
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
41
 
 
 
42
  ## Repositories available
43
 
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Genz-70b-GPTQ)
45
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Genz-70b-GGUF)
46
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Genz-70b-GGML)
47
  * [Bud's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/budecosystem/genz-70b)
 
48
 
 
49
  ## Prompt template: User-Assistant-Newlines
50
 
51
  ```
@@ -56,20 +61,23 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
56
 
57
  ```
58
 
 
 
 
59
  ## Provided files and GPTQ parameters
60
 
61
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
62
 
63
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
64
 
65
- All GPTQ files are made with AutoGPTQ.
66
 
67
  <details>
68
  <summary>Explanation of GPTQ parameters</summary>
69
 
70
  - Bits: The bit size of the quantised model.
71
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
72
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
73
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
74
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
75
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -84,6 +92,9 @@ All GPTQ files are made with AutoGPTQ.
84
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Genz-70b-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
85
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Genz-70b-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
86
 
 
 
 
87
  ## How to download from branches
88
 
89
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Genz-70b-GPTQ:gptq-4bit-32g-actorder_True`
@@ -92,73 +103,72 @@ All GPTQ files are made with AutoGPTQ.
92
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Genz-70b-GPTQ
93
  ```
94
  - In Python Transformers code, the branch is the `revision` parameter; see below.
95
-
 
96
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
97
 
98
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
 
100
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
101
 
102
  1. Click the **Model tab**.
103
  2. Under **Download custom model or LoRA**, enter `TheBloke/Genz-70b-GPTQ`.
104
  - To download from a specific branch, enter for example `TheBloke/Genz-70b-GPTQ:gptq-4bit-32g-actorder_True`
105
  - see Provided Files above for the list of branches for each option.
106
  3. Click **Download**.
107
- 4. The model will start downloading. Once it's finished it will say "Done"
108
  5. In the top left, click the refresh icon next to **Model**.
109
  6. In the **Model** dropdown, choose the model you just downloaded: `Genz-70b-GPTQ`
110
  7. The model will automatically load, and is now ready for use!
111
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
112
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
113
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
114
 
 
115
  ## How to use this GPTQ model from Python code
116
 
117
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
118
 
119
- ```
120
- pip3 install auto-gptq
121
- ```
122
 
123
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
124
  ```
 
 
 
 
125
  pip3 uninstall -y auto-gptq
126
  git clone https://github.com/PanQiWei/AutoGPTQ
127
  cd AutoGPTQ
128
  pip3 install .
129
  ```
130
 
131
- Then try the following example code:
 
 
 
 
 
 
 
 
132
 
133
  ```python
134
- from transformers import AutoTokenizer, pipeline, logging
135
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
136
 
137
  model_name_or_path = "TheBloke/Genz-70b-GPTQ"
138
-
139
- use_triton = False
 
 
 
 
140
 
141
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
142
 
143
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
144
- use_safetensors=True,
145
- trust_remote_code=False,
146
- device="cuda:0",
147
- use_triton=use_triton,
148
- quantize_config=None)
149
-
150
- """
151
- # To download from a specific branch, use the revision parameter, as in this example:
152
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
153
-
154
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
155
- revision="gptq-4bit-32g-actorder_True",
156
- use_safetensors=True,
157
- trust_remote_code=False,
158
- device="cuda:0",
159
- quantize_config=None)
160
- """
161
-
162
  prompt = "Tell me about AI"
163
  prompt_template=f'''### User:
164
  {prompt}
@@ -175,9 +185,6 @@ print(tokenizer.decode(output[0]))
175
 
176
  # Inference can also be done using transformers' pipeline
177
 
178
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
179
- logging.set_verbosity(logging.CRITICAL)
180
-
181
  print("*** Pipeline:")
182
  pipe = pipeline(
183
  "text-generation",
@@ -191,12 +198,17 @@ pipe = pipeline(
191
 
192
  print(pipe(prompt_template)[0]['generated_text'])
193
  ```
 
194
 
 
195
  ## Compatibility
196
 
197
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
198
 
199
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
200
 
201
  <!-- footer start -->
202
  <!-- 200823 -->
@@ -221,7 +233,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
221
 
222
  **Special thanks to**: Aemon Algiz.
223
 
224
- **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
225
 
226
 
227
  Thank you to all my generous patrons and donaters!
@@ -246,7 +258,7 @@ And thank you again to a16z for their generous grant.
246
 
247
  Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 70B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon.
248
 
249
- <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/MTBench_CompareChart_28July2023.png" width="500"></p>
250
 
251
  The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology.
252
 
@@ -275,6 +287,28 @@ And this isn't the end. It's just the beginning of a journey towards creating mo
275
 
276
  ---
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
 
279
  <h2>Getting Started on Hugging Face 🤗</h2>
280
 
@@ -385,29 +419,6 @@ Here are the hyperparameters we used for fine-tuning:
385
  | Precision | FP16 |
386
  | Optimizer | AdamW |
387
 
388
- ---
389
-
390
- <h2>Evaluations 🎯</h2>
391
-
392
- Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 70B:
393
-
394
- <h3>Benchmark Comparison</h3>
395
-
396
- We've compared GenZ models to understand the improvements our fine-tuning has achieved.
397
-
398
- | Model Name | MT Bench | MMLU | Human Eval | Hellaswag | BBH |
399
- |:----------:|:--------:|:----:|:----------:|:---------:|:----:|
400
- | Genz 13B | 6.12 | 53.62| 17.68 | 77.38 | 37.76|
401
- | Genz 13B v2| 6.79 | 53.68| 21.95 | 77.48 | 38.1 |
402
- | Genz 70B | 7.33 | 70.32| | | |
403
-
404
- <h3>MT Bench Score</h3>
405
-
406
- A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks.
407
-
408
- <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p>
409
-
410
-
411
  ---
412
 
413
  <h2>Looking Ahead 👀</h2>
 
33
  - Model creator: [Bud](https://huggingface.co/budecosystem)
34
  - Original model: [GenZ 70B](https://huggingface.co/budecosystem/genz-70b)
35
 
36
+ <!-- description start -->
37
  ## Description
38
 
39
  This repo contains GPTQ model files for [Bud's GenZ 70B](https://huggingface.co/budecosystem/genz-70b).
40
 
41
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
 
43
+ <!-- description end -->
44
+ <!-- repositories-available start -->
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Genz-70b-GPTQ)
48
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Genz-70b-GGUF)
49
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Genz-70b-GGML)
50
  * [Bud's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/budecosystem/genz-70b)
51
+ <!-- repositories-available end -->
52
 
53
+ <!-- prompt-template start -->
54
  ## Prompt template: User-Assistant-Newlines
55
 
56
  ```
 
61
 
62
  ```
63
 
64
+ <!-- prompt-template end -->
65
+
66
+ <!-- README_GPTQ.md-provided-files start -->
67
  ## Provided files and GPTQ parameters
68
 
69
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
70
 
71
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
72
 
73
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
74
 
75
  <details>
76
  <summary>Explanation of GPTQ parameters</summary>
77
 
78
  - Bits: The bit size of the quantised model.
79
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
80
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
81
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
82
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
83
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
92
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Genz-70b-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
93
  | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Genz-70b-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
94
 
95
+ <!-- README_GPTQ.md-provided-files end -->
96
+
97
+ <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Genz-70b-GPTQ:gptq-4bit-32g-actorder_True`
 
103
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Genz-70b-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
+ <!-- README_GPTQ.md-download-from-branches end -->
107
+ <!-- README_GPTQ.md-text-generation-webui start -->
108
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
 
110
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/Genz-70b-GPTQ`.
116
  - To download from a specific branch, enter for example `TheBloke/Genz-70b-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
+ 4. The model will start downloading. Once it's finished it will say "Done".
120
  5. In the top left, click the refresh icon next to **Model**.
121
  6. In the **Model** dropdown, choose the model you just downloaded: `Genz-70b-GPTQ`
122
  7. The model will automatically load, and is now ready for use!
123
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
124
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
125
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
126
+ <!-- README_GPTQ.md-text-generation-webui end -->
127
 
128
+ <!-- README_GPTQ.md-use-from-python start -->
129
  ## How to use this GPTQ model from Python code
130
 
131
+ ### Install the necessary packages
132
 
133
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
134
 
135
+ ```shell
136
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
137
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
138
  ```
139
+
140
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
141
+
142
+ ```shell
143
  pip3 uninstall -y auto-gptq
144
  git clone https://github.com/PanQiWei/AutoGPTQ
145
  cd AutoGPTQ
146
  pip3 install .
147
  ```
148
 
149
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
150
+
151
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
152
+ ```shell
153
+ pip3 uninstall -y transformers
154
+ pip3 install git+https://github.com/huggingface/transformers.git
155
+ ```
156
+
157
+ ### You can then use the following code
158
 
159
  ```python
160
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
161
 
162
  model_name_or_path = "TheBloke/Genz-70b-GPTQ"
163
+ # To use a different branch, change revision
164
+ # For example: revision="gptq-4bit-32g-actorder_True"
165
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
+ torch_dtype=torch.bfloat16,
167
+ device_map="auto",
168
+ revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  prompt = "Tell me about AI"
173
  prompt_template=f'''### User:
174
  {prompt}
 
185
 
186
  # Inference can also be done using transformers' pipeline
187
 
 
 
 
188
  print("*** Pipeline:")
189
  pipe = pipeline(
190
  "text-generation",
 
198
 
199
  print(pipe(prompt_template)[0]['generated_text'])
200
  ```
201
+ <!-- README_GPTQ.md-use-from-python end -->
202
 
203
+ <!-- README_GPTQ.md-compatibility start -->
204
  ## Compatibility
205
 
206
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
207
 
208
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
209
+
210
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
211
+ <!-- README_GPTQ.md-compatibility end -->
212
 
213
  <!-- footer start -->
214
  <!-- 200823 -->
 
233
 
234
  **Special thanks to**: Aemon Algiz.
235
 
236
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
237
 
238
 
239
  Thank you to all my generous patrons and donaters!
 
258
 
259
  Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 70B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon.
260
 
261
+ <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_compare.png" width="500"></p>
262
 
263
  The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology.
264
 
 
287
 
288
  ---
289
 
290
+ <h2>Evaluations 🎯</h2>
291
+
292
+ Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 70B:
293
+
294
+ <h3>Benchmark Comparison</h3>
295
+
296
+ We've compared GenZ models to understand the improvements our fine-tuning has achieved.
297
+
298
+ | Model Name | MT Bench | MMLU | Human Eval | BBH |
299
+ |:----------:|:--------:|:----:|:----------:|:----:|
300
+ | Genz 13B | 6.12 | 53.62| 17.68 | 37.76|
301
+ | Genz 13B v2| 6.79 | 53.68| 21.95 | 38.1 |
302
+ | Genz 70B | 7.33 | 70.32| 37.8 |54.69 |
303
+
304
+ <h3>MT Bench Score</h3>
305
+
306
+ A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks.
307
+
308
+ <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p>
309
+
310
+
311
+ ---
312
 
313
  <h2>Getting Started on Hugging Face 🤗</h2>
314
 
 
419
  | Precision | FP16 |
420
  | Optimizer | AdamW |
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
  ---
423
 
424
  <h2>Looking Ahead 👀</h2>