Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: https://huggingface.co/upstage/llama-30b-instruct-2048
|
3 |
+
datasets:
|
4 |
+
- sciq
|
5 |
+
- metaeval/ScienceQA_text_only
|
6 |
+
- GAIR/lima
|
7 |
+
- Open-Orca/OpenOrca
|
8 |
+
- openbookqa
|
9 |
+
inference: false
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
license: other
|
13 |
+
model_creator: upstage
|
14 |
+
model_name: Llama 30B Instruct 2048
|
15 |
+
model_type: llama
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
prompt_template: '### System:
|
18 |
+
|
19 |
+
{system_message}
|
20 |
+
|
21 |
+
|
22 |
+
### User:
|
23 |
+
|
24 |
+
{prompt}
|
25 |
+
|
26 |
+
|
27 |
+
### Assistant:
|
28 |
+
|
29 |
+
'
|
30 |
+
quantized_by: TheBloke
|
31 |
+
tags:
|
32 |
+
- upstage
|
33 |
+
- llama
|
34 |
+
- instruct
|
35 |
+
- instruction
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- header start -->
|
39 |
+
<!-- 200823 -->
|
40 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
41 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
42 |
+
</div>
|
43 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
44 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
45 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
46 |
+
</div>
|
47 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
48 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
49 |
+
</div>
|
50 |
+
</div>
|
51 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
52 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
53 |
+
<!-- header end -->
|
54 |
+
|
55 |
+
# Llama 30B Instruct 2048 - AWQ
|
56 |
+
- Model creator: [upstage](https://huggingface.co/upstage)
|
57 |
+
- Original model: [Llama 30B Instruct 2048](https://huggingface.co/upstage/llama-30b-instruct-2048)
|
58 |
+
|
59 |
+
<!-- description start -->
|
60 |
+
## Description
|
61 |
+
|
62 |
+
This repo contains AWQ model files for [Upstage's Llama 30B Instruct 2048](https://huggingface.co/upstage/llama-30b-instruct-2048).
|
63 |
+
|
64 |
+
Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files!
|
65 |
+
|
66 |
+
|
67 |
+
### About AWQ
|
68 |
+
|
69 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
|
70 |
+
|
71 |
+
It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
|
72 |
+
<!-- description end -->
|
73 |
+
<!-- repositories-available start -->
|
74 |
+
## Repositories available
|
75 |
+
|
76 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-AWQ)
|
77 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-GPTQ)
|
78 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-GGUF)
|
79 |
+
* [upstage's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/upstage/llama-30b-instruct-2048)
|
80 |
+
<!-- repositories-available end -->
|
81 |
+
|
82 |
+
<!-- prompt-template start -->
|
83 |
+
## Prompt template: Orca-Hashes
|
84 |
+
|
85 |
+
```
|
86 |
+
### System:
|
87 |
+
{system_message}
|
88 |
+
|
89 |
+
### User:
|
90 |
+
{prompt}
|
91 |
+
|
92 |
+
### Assistant:
|
93 |
+
|
94 |
+
```
|
95 |
+
|
96 |
+
<!-- prompt-template end -->
|
97 |
+
|
98 |
+
|
99 |
+
<!-- README_AWQ.md-provided-files start -->
|
100 |
+
## Provided files and AWQ parameters
|
101 |
+
|
102 |
+
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
|
103 |
+
|
104 |
+
Models are released as sharded safetensors files.
|
105 |
+
|
106 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
107 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
108 |
+
| [main](https://huggingface.co/TheBloke/upstage-llama-30b-instruct-2048-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 17.53 GB
|
109 |
+
|
110 |
+
<!-- README_AWQ.md-provided-files end -->
|
111 |
+
|
112 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
113 |
+
## Serving this model from vLLM
|
114 |
+
|
115 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
116 |
+
|
117 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
118 |
+
|
119 |
+
```shell
|
120 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/upstage-llama-30b-instruct-2048-AWQ --quantization awq
|
121 |
+
```
|
122 |
+
|
123 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
124 |
+
|
125 |
+
```python
|
126 |
+
from vllm import LLM, SamplingParams
|
127 |
+
|
128 |
+
prompts = [
|
129 |
+
"Hello, my name is",
|
130 |
+
"The president of the United States is",
|
131 |
+
"The capital of France is",
|
132 |
+
"The future of AI is",
|
133 |
+
]
|
134 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
135 |
+
|
136 |
+
llm = LLM(model="TheBloke/upstage-llama-30b-instruct-2048-AWQ", quantization="awq")
|
137 |
+
|
138 |
+
outputs = llm.generate(prompts, sampling_params)
|
139 |
+
|
140 |
+
# Print the outputs.
|
141 |
+
for output in outputs:
|
142 |
+
prompt = output.prompt
|
143 |
+
generated_text = output.outputs[0].text
|
144 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
145 |
+
```
|
146 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
147 |
+
|
148 |
+
<!-- README_AWQ.md-use-from-python start -->
|
149 |
+
## How to use this AWQ model from Python code
|
150 |
+
|
151 |
+
### Install the necessary packages
|
152 |
+
|
153 |
+
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
|
154 |
+
|
155 |
+
```shell
|
156 |
+
pip3 install autoawq
|
157 |
+
```
|
158 |
+
|
159 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
160 |
+
|
161 |
+
```shell
|
162 |
+
pip3 uninstall -y autoawq
|
163 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
164 |
+
cd AutoAWQ
|
165 |
+
pip3 install .
|
166 |
+
```
|
167 |
+
|
168 |
+
### You can then try the following example code
|
169 |
+
|
170 |
+
```python
|
171 |
+
from awq import AutoAWQForCausalLM
|
172 |
+
from transformers import AutoTokenizer
|
173 |
+
|
174 |
+
model_name_or_path = "TheBloke/upstage-llama-30b-instruct-2048-AWQ"
|
175 |
+
|
176 |
+
# Load model
|
177 |
+
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
|
178 |
+
trust_remote_code=False, safetensors=True)
|
179 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
|
180 |
+
|
181 |
+
prompt = "Tell me about AI"
|
182 |
+
prompt_template=f'''### System:
|
183 |
+
{system_message}
|
184 |
+
|
185 |
+
### User:
|
186 |
+
{prompt}
|
187 |
+
|
188 |
+
### Assistant:
|
189 |
+
|
190 |
+
'''
|
191 |
+
|
192 |
+
print("\n\n*** Generate:")
|
193 |
+
|
194 |
+
tokens = tokenizer(
|
195 |
+
prompt_template,
|
196 |
+
return_tensors='pt'
|
197 |
+
).input_ids.cuda()
|
198 |
+
|
199 |
+
# Generate output
|
200 |
+
generation_output = model.generate(
|
201 |
+
tokens,
|
202 |
+
do_sample=True,
|
203 |
+
temperature=0.7,
|
204 |
+
top_p=0.95,
|
205 |
+
top_k=40,
|
206 |
+
max_new_tokens=512
|
207 |
+
)
|
208 |
+
|
209 |
+
print("Output: ", tokenizer.decode(generation_output[0]))
|
210 |
+
|
211 |
+
# Inference can also be done using transformers' pipeline
|
212 |
+
from transformers import pipeline
|
213 |
+
|
214 |
+
print("*** Pipeline:")
|
215 |
+
pipe = pipeline(
|
216 |
+
"text-generation",
|
217 |
+
model=model,
|
218 |
+
tokenizer=tokenizer,
|
219 |
+
max_new_tokens=512,
|
220 |
+
do_sample=True,
|
221 |
+
temperature=0.7,
|
222 |
+
top_p=0.95,
|
223 |
+
top_k=40,
|
224 |
+
repetition_penalty=1.1
|
225 |
+
)
|
226 |
+
|
227 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
228 |
+
```
|
229 |
+
<!-- README_AWQ.md-use-from-python end -->
|
230 |
+
|
231 |
+
<!-- README_AWQ.md-compatibility start -->
|
232 |
+
## Compatibility
|
233 |
+
|
234 |
+
The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
|
235 |
+
|
236 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
|
237 |
+
<!-- README_AWQ.md-compatibility end -->
|
238 |
+
|
239 |
+
<!-- footer start -->
|
240 |
+
<!-- 200823 -->
|
241 |
+
## Discord
|
242 |
+
|
243 |
+
For further support, and discussions on these models and AI in general, join us at:
|
244 |
+
|
245 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
246 |
+
|
247 |
+
## Thanks, and how to contribute
|
248 |
+
|
249 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
250 |
+
|
251 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
252 |
+
|
253 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
254 |
+
|
255 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
256 |
+
|
257 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
258 |
+
|
259 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
260 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
261 |
+
|
262 |
+
**Special thanks to**: Aemon Algiz.
|
263 |
+
|
264 |
+
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
|
265 |
+
|
266 |
+
|
267 |
+
Thank you to all my generous patrons and donaters!
|
268 |
+
|
269 |
+
And thank you again to a16z for their generous grant.
|
270 |
+
|
271 |
+
<!-- footer end -->
|
272 |
+
|
273 |
+
# Original model card: Upstage's Llama 30B Instruct 2048
|
274 |
+
|
275 |
+
# LLaMa-30b-instruct-2048 model card
|
276 |
+
|
277 |
+
## Model Details
|
278 |
+
|
279 |
+
* **Developed by**: [Upstage](https://en.upstage.ai)
|
280 |
+
* **Backbone Model**: [LLaMA](https://github.com/facebookresearch/llama/tree/llama_v1)
|
281 |
+
* **Variations**: It has different model parameter sizes and sequence lengths: [30B/1024](https://huggingface.co/upstage/llama-30b-instruct), [30B/2048](https://huggingface.co/upstage/llama-30b-instruct-2048), [65B/1024](https://huggingface.co/upstage/llama-65b-instruct)
|
282 |
+
* **Language(s)**: English
|
283 |
+
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
|
284 |
+
* **License**: This model is under a **Non-commercial** Bespoke License and governed by the Meta license. You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform), but have either lost your copy of the weights or encountered issues converting them to the Transformers format
|
285 |
+
* **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/llama-30b-instruct-2048/discussions)
|
286 |
+
* **Contact**: For questions and comments about the model, please email [[email protected]](mailto:[email protected])
|
287 |
+
|
288 |
+
## Dataset Details
|
289 |
+
|
290 |
+
### Used Datasets
|
291 |
+
|
292 |
+
- [openbookqa](https://huggingface.co/datasets/openbookqa)
|
293 |
+
- [sciq](https://huggingface.co/datasets/sciq)
|
294 |
+
- [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
295 |
+
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only)
|
296 |
+
- [GAIR/lima](https://huggingface.co/datasets/GAIR/lima)
|
297 |
+
- No other data was used except for the dataset mentioned above
|
298 |
+
|
299 |
+
### Prompt Template
|
300 |
+
```
|
301 |
+
### System:
|
302 |
+
{System}
|
303 |
+
|
304 |
+
### User:
|
305 |
+
{User}
|
306 |
+
|
307 |
+
### Assistant:
|
308 |
+
{Assistant}
|
309 |
+
```
|
310 |
+
|
311 |
+
## Usage
|
312 |
+
|
313 |
+
- Tested on A100 80GB
|
314 |
+
- Our model can handle up to 10k+ input tokens, thanks to the `rope_scaling` option
|
315 |
+
|
316 |
+
```python
|
317 |
+
import torch
|
318 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
319 |
+
|
320 |
+
tokenizer = AutoTokenizer.from_pretrained("upstage/llama-30b-instruct-2048")
|
321 |
+
model = AutoModelForCausalLM.from_pretrained(
|
322 |
+
"upstage/llama-30b-instruct-2048",
|
323 |
+
device_map="auto",
|
324 |
+
torch_dtype=torch.float16,
|
325 |
+
load_in_8bit=True,
|
326 |
+
rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
|
327 |
+
)
|
328 |
+
|
329 |
+
prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
|
330 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
331 |
+
del inputs["token_type_ids"]
|
332 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
333 |
+
|
334 |
+
output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
|
335 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
336 |
+
```
|
337 |
+
|
338 |
+
## Hardware and Software
|
339 |
+
|
340 |
+
* **Hardware**: We utilized an A100x8 * 1 for training our model
|
341 |
+
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
|
342 |
+
|
343 |
+
## Evaluation Results
|
344 |
+
|
345 |
+
### Overview
|
346 |
+
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
347 |
+
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
|
348 |
+
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463)
|
349 |
+
- We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models
|
350 |
+
|
351 |
+
### Main Results
|
352 |
+
| Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
|
353 |
+
|--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
|
354 |
+
| **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(Ours, Open LLM Leaderboard) | **73** | **71.1** | **87.9** | **70.6** | **62.2** | | **7.44063** |
|
355 |
+
| [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | 69.8 | 61 | | 7.24375 |
|
356 |
+
| [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
|
357 |
+
| Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 | | |
|
358 |
+
| [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (***Ours***, ***Open LLM Leaderboard***) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
|
359 |
+
| [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
|
360 |
+
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
|
361 |
+
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
|
362 |
+
|
363 |
+
|
364 |
+
### Scripts for H4 Score Reproduction
|
365 |
+
- Prepare evaluation environments:
|
366 |
+
```
|
367 |
+
# clone the repository
|
368 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
369 |
+
# check out the specific commit
|
370 |
+
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
|
371 |
+
# change to the repository directory
|
372 |
+
cd lm-evaluation-harness
|
373 |
+
```
|
374 |
+
|
375 |
+
## Ethical Issues
|
376 |
+
|
377 |
+
### Ethical Considerations
|
378 |
+
- There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process
|
379 |
+
|
380 |
+
## Contact Us
|
381 |
+
|
382 |
+
### Why Upstage LLM?
|
383 |
+
- [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. As of August 1st, our 70B model has reached the top spot in openLLM rankings, marking itself as the current leading performer globally. Recognizing the immense potential in implementing private LLM to actual businesses, we invite you to easily apply private LLM and fine-tune it with your own data. For a seamless and tailored solution, please do not hesitate to reach out to us. ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm)
|