--- base_model: microsoft/dit-base-finetuned-rvlcdip tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dit-base-rvlcdip-finetuned-grp-actual results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9015151515151515 --- # dit-base-rvlcdip-finetuned-grp-actual This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4601 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8692 | 0.96 | 18 | 0.6972 | 0.8561 | | 0.7348 | 1.97 | 37 | 0.6350 | 0.8598 | | 0.6655 | 2.99 | 56 | 0.5339 | 0.8712 | | 0.7167 | 4.0 | 75 | 0.5046 | 0.8902 | | 0.694 | 4.96 | 93 | 0.5026 | 0.8864 | | 0.6638 | 5.97 | 112 | 0.4601 | 0.9015 | | 0.6618 | 6.72 | 126 | 0.4582 | 0.8977 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3