Triangle104
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,47 @@ tags:
|
|
17 |
This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-8B`](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
18 |
Refer to the [original model card](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) for more details on the model.
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Use with llama.cpp
|
21 |
Install llama.cpp through brew (works on Mac and Linux)
|
22 |
|
|
|
17 |
This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-8B`](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
18 |
Refer to the [original model card](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) for more details on the model.
|
19 |
|
20 |
+
---
|
21 |
+
Model details:
|
22 |
+
-
|
23 |
+
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.
|
24 |
+
|
25 |
+
Usage
|
26 |
+
You can use HuatuoGPT-o1 in the same way as Llama-3.1-8B-Instruct. You can deploy it with tools like vllm or Sglang, or perform direct inference:
|
27 |
+
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
+
|
30 |
+
model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")
|
32 |
+
|
33 |
+
input_text = "How to stop a cough?"
|
34 |
+
messages = [{"role": "user", "content": input_text}]
|
35 |
+
|
36 |
+
inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
|
37 |
+
), return_tensors="pt").to(model.device)
|
38 |
+
outputs = model.generate(**inputs, max_new_tokens=2048)
|
39 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
40 |
+
|
41 |
+
HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:
|
42 |
+
|
43 |
+
## Thinking
|
44 |
+
[Reasoning process]
|
45 |
+
|
46 |
+
## Final Response
|
47 |
+
[Output]
|
48 |
+
|
49 |
+
📖 Citation
|
50 |
+
@misc{chen2024huatuogpto1medicalcomplexreasoning,
|
51 |
+
title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
|
52 |
+
author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
|
53 |
+
year={2024},
|
54 |
+
eprint={2412.18925},
|
55 |
+
archivePrefix={arXiv},
|
56 |
+
primaryClass={cs.CL},
|
57 |
+
url={https://arxiv.org/abs/2412.18925},
|
58 |
+
}
|
59 |
+
|
60 |
+
---
|
61 |
## Use with llama.cpp
|
62 |
Install llama.cpp through brew (works on Mac and Linux)
|
63 |
|