--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8405963302752294 --- # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.7317 - Accuracy: 0.8406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006313076279512913 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.208 | 1.0 | 66 | 1.7965 | 0.8165 | | 0.9055 | 2.0 | 132 | 1.7602 | 0.8291 | | 0.6567 | 3.0 | 198 | 1.6973 | 0.8360 | | 0.5417 | 4.0 | 264 | 1.7317 | 0.8406 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3