Xavarary commited on
Commit
5c4bea1
·
verified ·
1 Parent(s): d1fc2a1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-distilroberta-v1
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy
11
+ - dot_accuracy
12
+ - manhattan_accuracy
13
+ - euclidean_accuracy
14
+ - max_accuracy
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:557850
22
+ - loss:MultipleNegativesRankingLoss
23
+ widget:
24
+ - source_sentence: A man is jumping unto his filthy bed.
25
+ sentences:
26
+ - A young male is looking at a newspaper while 2 females walks past him.
27
+ - The bed is dirty.
28
+ - The man is on the moon.
29
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
30
+ beach area.
31
+ sentences:
32
+ - A man is ouside near the beach.
33
+ - Three policemen patrol the streets on bikes
34
+ - A man is sitting on his couch.
35
+ - source_sentence: The man is wearing a blue shirt.
36
+ sentences:
37
+ - Near the trashcan the man stood and smoked
38
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
39
+ with water in the background.
40
+ - A man in a black shirt is playing a guitar.
41
+ - source_sentence: The girls are outdoors.
42
+ sentences:
43
+ - Two girls riding on an amusement part ride.
44
+ - a guy laughs while doing laundry
45
+ - Three girls are standing together in a room, one is listening, one is writing
46
+ on a wall and the third is talking to them.
47
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
48
+ sits on the sidewalk smiling.
49
+ sentences:
50
+ - A worker is looking out of a manhole.
51
+ - A man is giving a presentation.
52
+ - The workers are both inside the manhole.
53
+ model-index:
54
+ - name: test
55
+ results:
56
+ - task:
57
+ type: triplet
58
+ name: Triplet
59
+ dataset:
60
+ name: all nli dev
61
+ type: all-nli-dev
62
+ metrics:
63
+ - type: cosine_accuracy
64
+ value: 0.07790262172284644
65
+ name: Cosine Accuracy
66
+ - type: dot_accuracy
67
+ value: 0.9220973782771535
68
+ name: Dot Accuracy
69
+ - type: manhattan_accuracy
70
+ value: 0.078330658105939
71
+ name: Manhattan Accuracy
72
+ - type: euclidean_accuracy
73
+ value: 0.07790262172284644
74
+ name: Euclidean Accuracy
75
+ - type: max_accuracy
76
+ value: 0.078330658105939
77
+ name: Max Accuracy
78
+ - type: cosine_accuracy
79
+ value: 0.09212121212121212
80
+ name: Cosine Accuracy
81
+ - type: dot_accuracy
82
+ value: 0.9078787878787878
83
+ name: Dot Accuracy
84
+ - type: manhattan_accuracy
85
+ value: 0.09696969696969697
86
+ name: Manhattan Accuracy
87
+ - type: euclidean_accuracy
88
+ value: 0.09212121212121212
89
+ name: Euclidean Accuracy
90
+ - type: max_accuracy
91
+ value: 0.09696969696969697
92
+ name: Max Accuracy
93
+ ---
94
+
95
+ # test
96
+
97
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
+
99
+ ## Model Details
100
+
101
+ ### Model Description
102
+ - **Model Type:** Sentence Transformer
103
+ - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 14e2a3f3090548596d23882845152a951333c0e3 -->
104
+ - **Maximum Sequence Length:** 512 tokens
105
+ - **Output Dimensionality:** 768 tokens
106
+ - **Similarity Function:** Cosine Similarity
107
+ - **Training Dataset:**
108
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
109
+ - **Language:** en
110
+ - **License:** apache-2.0
111
+
112
+ ### Model Sources
113
+
114
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
115
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
116
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
117
+
118
+ ### Full Model Architecture
119
+
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
124
+ (2): Normalize()
125
+ )
126
+ ```
127
+
128
+ ## Usage
129
+
130
+ ### Direct Usage (Sentence Transformers)
131
+
132
+ First install the Sentence Transformers library:
133
+
134
+ ```bash
135
+ pip install -U sentence-transformers
136
+ ```
137
+
138
+ Then you can load this model and run inference.
139
+ ```python
140
+ from sentence_transformers import SentenceTransformer
141
+
142
+ # Download from the 🤗 Hub
143
+ model = SentenceTransformer("Xavarary/mpnet-base-all-medium-triplet")
144
+ # Run inference
145
+ sentences = [
146
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
147
+ 'A worker is looking out of a manhole.',
148
+ 'The workers are both inside the manhole.',
149
+ ]
150
+ embeddings = model.encode(sentences)
151
+ print(embeddings.shape)
152
+ # [3, 768]
153
+
154
+ # Get the similarity scores for the embeddings
155
+ similarities = model.similarity(embeddings, embeddings)
156
+ print(similarities.shape)
157
+ # [3, 3]
158
+ ```
159
+
160
+ <!--
161
+ ### Direct Usage (Transformers)
162
+
163
+ <details><summary>Click to see the direct usage in Transformers</summary>
164
+
165
+ </details>
166
+ -->
167
+
168
+ <!--
169
+ ### Downstream Usage (Sentence Transformers)
170
+
171
+ You can finetune this model on your own dataset.
172
+
173
+ <details><summary>Click to expand</summary>
174
+
175
+ </details>
176
+ -->
177
+
178
+ <!--
179
+ ### Out-of-Scope Use
180
+
181
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
182
+ -->
183
+
184
+ ## Evaluation
185
+
186
+ ### Metrics
187
+
188
+ #### Triplet
189
+ * Dataset: `all-nli-dev`
190
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
191
+
192
+ | Metric | Value |
193
+ |:-------------------|:-----------|
194
+ | cosine_accuracy | 0.0779 |
195
+ | dot_accuracy | 0.9221 |
196
+ | manhattan_accuracy | 0.0783 |
197
+ | euclidean_accuracy | 0.0779 |
198
+ | **max_accuracy** | **0.0783** |
199
+
200
+ #### Triplet
201
+ * Dataset: `all-nli-dev`
202
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
203
+
204
+ | Metric | Value |
205
+ |:-------------------|:----------|
206
+ | cosine_accuracy | 0.0921 |
207
+ | dot_accuracy | 0.9079 |
208
+ | manhattan_accuracy | 0.097 |
209
+ | euclidean_accuracy | 0.0921 |
210
+ | **max_accuracy** | **0.097** |
211
+
212
+ <!--
213
+ ## Bias, Risks and Limitations
214
+
215
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
216
+ -->
217
+
218
+ <!--
219
+ ### Recommendations
220
+
221
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
222
+ -->
223
+
224
+ ## Training Details
225
+
226
+ ### Training Dataset
227
+
228
+ #### all-nli
229
+
230
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
231
+ * Size: 557,850 training samples
232
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
233
+ * Approximate statistics based on the first 1000 samples:
234
+ | | anchor | positive | negative |
235
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
236
+ | type | string | string | string |
237
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
238
+ * Samples:
239
+ | anchor | positive | negative |
240
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
241
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
242
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
243
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
244
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
245
+ ```json
246
+ {
247
+ "scale": 20.0,
248
+ "similarity_fct": "cos_sim"
249
+ }
250
+ ```
251
+
252
+ ### Evaluation Dataset
253
+
254
+ #### all-nli
255
+
256
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
257
+ * Size: 6,584 evaluation samples
258
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
259
+ * Approximate statistics based on the first 1000 samples:
260
+ | | anchor | positive | negative |
261
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
262
+ | type | string | string | string |
263
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
264
+ * Samples:
265
+ | anchor | positive | negative |
266
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
267
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
268
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
269
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
270
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
271
+ ```json
272
+ {
273
+ "scale": 20.0,
274
+ "similarity_fct": "cos_sim"
275
+ }
276
+ ```
277
+
278
+ ### Training Hyperparameters
279
+ #### Non-Default Hyperparameters
280
+
281
+ - `per_device_train_batch_size`: 16
282
+ - `per_device_eval_batch_size`: 16
283
+ - `learning_rate`: 2e-05
284
+ - `num_train_epochs`: 1
285
+ - `warmup_ratio`: 0.1
286
+ - `fp16`: True
287
+ - `batch_sampler`: no_duplicates
288
+
289
+ #### All Hyperparameters
290
+ <details><summary>Click to expand</summary>
291
+
292
+ - `overwrite_output_dir`: False
293
+ - `do_predict`: False
294
+ - `prediction_loss_only`: True
295
+ - `per_device_train_batch_size`: 16
296
+ - `per_device_eval_batch_size`: 16
297
+ - `per_gpu_train_batch_size`: None
298
+ - `per_gpu_eval_batch_size`: None
299
+ - `gradient_accumulation_steps`: 1
300
+ - `eval_accumulation_steps`: None
301
+ - `learning_rate`: 2e-05
302
+ - `weight_decay`: 0.0
303
+ - `adam_beta1`: 0.9
304
+ - `adam_beta2`: 0.999
305
+ - `adam_epsilon`: 1e-08
306
+ - `max_grad_norm`: 1.0
307
+ - `num_train_epochs`: 1
308
+ - `max_steps`: -1
309
+ - `lr_scheduler_type`: linear
310
+ - `lr_scheduler_kwargs`: {}
311
+ - `warmup_ratio`: 0.1
312
+ - `warmup_steps`: 0
313
+ - `log_level`: passive
314
+ - `log_level_replica`: warning
315
+ - `log_on_each_node`: True
316
+ - `logging_nan_inf_filter`: True
317
+ - `save_safetensors`: True
318
+ - `save_on_each_node`: False
319
+ - `save_only_model`: False
320
+ - `no_cuda`: False
321
+ - `use_cpu`: False
322
+ - `use_mps_device`: False
323
+ - `seed`: 42
324
+ - `data_seed`: None
325
+ - `jit_mode_eval`: False
326
+ - `use_ipex`: False
327
+ - `bf16`: False
328
+ - `fp16`: True
329
+ - `fp16_opt_level`: O1
330
+ - `half_precision_backend`: auto
331
+ - `bf16_full_eval`: False
332
+ - `fp16_full_eval`: False
333
+ - `tf32`: None
334
+ - `local_rank`: 0
335
+ - `ddp_backend`: None
336
+ - `tpu_num_cores`: None
337
+ - `tpu_metrics_debug`: False
338
+ - `debug`: []
339
+ - `dataloader_drop_last`: False
340
+ - `dataloader_num_workers`: 0
341
+ - `dataloader_prefetch_factor`: None
342
+ - `past_index`: -1
343
+ - `disable_tqdm`: False
344
+ - `remove_unused_columns`: True
345
+ - `label_names`: None
346
+ - `load_best_model_at_end`: False
347
+ - `ignore_data_skip`: False
348
+ - `fsdp`: []
349
+ - `fsdp_min_num_params`: 0
350
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
351
+ - `fsdp_transformer_layer_cls_to_wrap`: None
352
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
353
+ - `deepspeed`: None
354
+ - `label_smoothing_factor`: 0.0
355
+ - `optim`: adamw_torch
356
+ - `optim_args`: None
357
+ - `adafactor`: False
358
+ - `group_by_length`: False
359
+ - `length_column_name`: length
360
+ - `ddp_find_unused_parameters`: None
361
+ - `ddp_bucket_cap_mb`: None
362
+ - `ddp_broadcast_buffers`: False
363
+ - `dataloader_pin_memory`: True
364
+ - `dataloader_persistent_workers`: False
365
+ - `skip_memory_metrics`: True
366
+ - `use_legacy_prediction_loop`: False
367
+ - `push_to_hub`: False
368
+ - `resume_from_checkpoint`: None
369
+ - `hub_model_id`: None
370
+ - `hub_strategy`: every_save
371
+ - `hub_private_repo`: False
372
+ - `hub_always_push`: False
373
+ - `gradient_checkpointing`: False
374
+ - `gradient_checkpointing_kwargs`: None
375
+ - `include_inputs_for_metrics`: False
376
+ - `fp16_backend`: auto
377
+ - `push_to_hub_model_id`: None
378
+ - `push_to_hub_organization`: None
379
+ - `mp_parameters`:
380
+ - `auto_find_batch_size`: False
381
+ - `full_determinism`: False
382
+ - `torchdynamo`: None
383
+ - `ray_scope`: last
384
+ - `ddp_timeout`: 1800
385
+ - `torch_compile`: False
386
+ - `torch_compile_backend`: None
387
+ - `torch_compile_mode`: None
388
+ - `dispatch_batches`: None
389
+ - `split_batches`: None
390
+ - `include_tokens_per_second`: False
391
+ - `include_num_input_tokens_seen`: False
392
+ - `neftune_noise_alpha`: None
393
+ - `batch_sampler`: no_duplicates
394
+ - `multi_dataset_batch_sampler`: proportional
395
+
396
+ </details>
397
+
398
+ ### Training Logs
399
+ | Epoch | Step | Training Loss | all-nli-dev_max_accuracy |
400
+ |:-----:|:----:|:-------------:|:------------------------:|
401
+ | 0 | 0 | - | 0.0783 |
402
+ | 0.016 | 100 | 0.9326 | - |
403
+ | 0.032 | 200 | 0.7562 | - |
404
+ | 0.048 | 300 | 1.0227 | - |
405
+ | 0.064 | 400 | 0.6815 | - |
406
+ | 0.08 | 500 | 0.7091 | - |
407
+ | 0.096 | 600 | 0.8731 | - |
408
+ | 0.112 | 700 | 0.8263 | - |
409
+ | 0.128 | 800 | 0.9691 | - |
410
+ | 0.144 | 900 | 0.9814 | - |
411
+ | 0.16 | 1000 | 0.8569 | - |
412
+ | 0.176 | 1100 | 0.9649 | - |
413
+ | 0.192 | 1200 | 0.8079 | - |
414
+ | 0.208 | 1300 | 0.6868 | - |
415
+ | 0.224 | 1400 | 0.6749 | - |
416
+ | 0.24 | 1500 | 0.6968 | - |
417
+ | 0.256 | 1600 | 0.5537 | - |
418
+ | 0.272 | 1700 | 0.7242 | - |
419
+ | 0.288 | 1800 | 0.7363 | - |
420
+ | 0.304 | 1900 | 0.5771 | - |
421
+ | 0.32 | 2000 | 0.5519 | - |
422
+ | 0.336 | 2100 | 0.4775 | - |
423
+ | 0.352 | 2200 | 0.4376 | - |
424
+ | 0.368 | 2300 | 0.6341 | - |
425
+ | 0.384 | 2400 | 0.5207 | - |
426
+ | 0.4 | 2500 | 0.5106 | - |
427
+ | 0.416 | 2600 | 0.4666 | - |
428
+ | 0.432 | 2700 | 0.8047 | - |
429
+ | 0.448 | 2800 | 0.6638 | - |
430
+ | 0.464 | 2900 | 0.6554 | - |
431
+ | 0.48 | 3000 | 0.6055 | - |
432
+ | 0.496 | 3100 | 0.5947 | - |
433
+ | 0.512 | 3200 | 0.4352 | - |
434
+ | 0.528 | 3300 | 0.4421 | - |
435
+ | 0.544 | 3400 | 0.4187 | - |
436
+ | 0.56 | 3500 | 0.4056 | - |
437
+ | 0.576 | 3600 | 0.4046 | - |
438
+ | 0.592 | 3700 | 0.3629 | - |
439
+ | 0.608 | 3800 | 0.3428 | - |
440
+ | 0.624 | 3900 | 0.362 | - |
441
+ | 0.64 | 4000 | 0.5858 | - |
442
+ | 0.656 | 4100 | 0.7457 | - |
443
+ | 0.672 | 4200 | 0.7033 | - |
444
+ | 0.688 | 4300 | 0.5343 | - |
445
+ | 0.704 | 4400 | 0.4125 | - |
446
+ | 0.72 | 4500 | 0.4567 | - |
447
+ | 0.736 | 4600 | 0.4921 | - |
448
+ | 0.752 | 4700 | 0.5264 | - |
449
+ | 0.768 | 4800 | 0.4883 | - |
450
+ | 0.784 | 4900 | 0.4231 | - |
451
+ | 0.8 | 5000 | 0.5048 | - |
452
+ | 0.816 | 5100 | 0.4044 | - |
453
+ | 0.832 | 5200 | 0.5102 | - |
454
+ | 0.848 | 5300 | 0.3751 | - |
455
+ | 0.864 | 5400 | 0.5139 | - |
456
+ | 0.88 | 5500 | 0.4439 | - |
457
+ | 0.896 | 5600 | 0.3999 | - |
458
+ | 0.912 | 5700 | 0.4932 | - |
459
+ | 0.928 | 5800 | 0.4349 | - |
460
+ | 0.944 | 5900 | 0.6022 | - |
461
+ | 0.96 | 6000 | 0.5906 | - |
462
+ | 0.976 | 6100 | 0.5021 | - |
463
+ | 0.992 | 6200 | 0.0002 | - |
464
+ | 1.0 | 6250 | - | 0.0970 |
465
+
466
+
467
+ ### Framework Versions
468
+ - Python: 3.11.5
469
+ - Sentence Transformers: 3.1.1
470
+ - Transformers: 4.38.0
471
+ - PyTorch: 2.2.2+cu121
472
+ - Accelerate: 0.33.0
473
+ - Datasets: 2.21.0
474
+ - Tokenizers: 0.15.2
475
+
476
+ ## Citation
477
+
478
+ ### BibTeX
479
+
480
+ #### Sentence Transformers
481
+ ```bibtex
482
+ @inproceedings{reimers-2019-sentence-bert,
483
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
484
+ author = "Reimers, Nils and Gurevych, Iryna",
485
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
486
+ month = "11",
487
+ year = "2019",
488
+ publisher = "Association for Computational Linguistics",
489
+ url = "https://arxiv.org/abs/1908.10084",
490
+ }
491
+ ```
492
+
493
+ #### MultipleNegativesRankingLoss
494
+ ```bibtex
495
+ @misc{henderson2017efficient,
496
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
497
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
498
+ year={2017},
499
+ eprint={1705.00652},
500
+ archivePrefix={arXiv},
501
+ primaryClass={cs.CL}
502
+ }
503
+ ```
504
+
505
+ <!--
506
+ ## Glossary
507
+
508
+ *Clearly define terms in order to be accessible across audiences.*
509
+ -->
510
+
511
+ <!--
512
+ ## Model Card Authors
513
+
514
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
515
+ -->
516
+
517
+ <!--
518
+ ## Model Card Contact
519
+
520
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
521
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-distilroberta-v1",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.38.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.38.0",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8890635224983d75627ab3a4c0806414d6842cf185174f1f820b9459429f2df0
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff