--- license: other pipeline_tag: text-to-audio library_name: transformers --- # Easy Windows & Linux install remghoost prepared a simple way to set up this demo on Windows and Linux [https://github.com/remghoost/meta-spirit-frontend](https://github.com/remghoost/meta-spirit-frontend) Please note that Windows version seems to perform around 10x slower in our limited testing. # Spirit LM Inference Gradio Demo Copy the github repo, build the [spiritlm](https://github.com/facebookresearch/spiritlm) python package and put models in `checkpoints` folder before running the script. I would suggest to use conda environment for this. You need around 15.5GB of VRAM to run the model with 200 tokens output length and around 19GB to output 800 tokens. If you're concerned about pickles from unknown uploader - grab them from a repo maintained by HF staffer - [https://huggingface.co/spirit-lm/Meta-spirit-lm](https://huggingface.co/spirit-lm/Meta-spirit-lm) Audio to audio inference doesn't seem good at all. Potentially I am tokenizing the audio wrong. Could be also that model doesn't work well with audio IN audio OUT. to install requirements for the sample Gradio demo provided, please run: ``` pip install torch torchaudio --index-url https://download.pytorch.org/whl/cu121 pip install gradio tempfile transformers numpy ``` Remember that you also need to install the [spiritlm](https://github.com/facebookresearch/spiritlm) module. ```python import gradio as gr from spiritlm.model.spiritlm_model import Spiritlm, OutputModality, GenerationInput, ContentType from transformers import GenerationConfig import torchaudio import torch import tempfile import os import numpy as np # Initialize the Spirit LM base model. You can change this to spirit-lm-expressive-7b for a more expressive experience. spirit_lm = Spiritlm("spirit-lm-base-7b") def generate_output(input_type, input_content_text, input_content_audio, output_modality, temperature, top_p, max_new_tokens, do_sample, speaker_id): generation_config = GenerationConfig( temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, do_sample=do_sample, ) if input_type == "text": interleaved_inputs = [GenerationInput(content=input_content_text, content_type=ContentType.TEXT)] elif input_type == "audio": # Load audio file waveform, sample_rate = torchaudio.load(input_content_audio) interleaved_inputs = [GenerationInput(content=waveform.squeeze(0), content_type=ContentType.SPEECH)] else: raise ValueError("Invalid input type") outputs = spirit_lm.generate( interleaved_inputs=interleaved_inputs, output_modality=OutputModality[output_modality.upper()], generation_config=generation_config, speaker_id=speaker_id, # Pass the selected speaker ID ) text_output = "" audio_output = None for output in outputs: if output.content_type == ContentType.TEXT: text_output = output.content elif output.content_type == ContentType.SPEECH: # Ensure output.content is a NumPy array if isinstance(output.content, np.ndarray): # Debugging: Print shape and dtype of the audio data print("Audio data shape:", output.content.shape) print("Audio data dtype:", output.content.dtype) # Ensure the audio data is in the correct format if len(output.content.shape) == 1: # Mono audio data audio_data = torch.from_numpy(output.content).unsqueeze(0) else: # Stereo audio data audio_data = torch.from_numpy(output.content) # Save the audio content to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: torchaudio.save(temp_audio_file.name, audio_data, 16000) audio_output = temp_audio_file.name else: raise TypeError("Expected output.content to be a NumPy array, but got {}".format(type(output.content))) return text_output, audio_output # Define the Gradio interface iface = gr.Interface( fn=generate_output, inputs=[ gr.Radio(["text", "audio"], label="Input Type", value="text"), gr.Textbox(label="Input Content (Text)"), gr.Audio(label="Input Content (Audio)", type="filepath"), gr.Radio(["TEXT", "SPEECH", "ARBITRARY"], label="Output Modality", value="SPEECH"), gr.Slider(0, 1, step=0.1, value=0.9, label="Temperature"), gr.Slider(0, 1, step=0.05, value=0.95, label="Top P"), gr.Slider(1, 800, step=1, value=500, label="Max New Tokens"), gr.Checkbox(value=True, label="Do Sample"), gr.Dropdown(choices=[0, 1, 2, 3], value=0, label="Speaker ID"), ], outputs=[gr.Textbox(label="Generated Text"), gr.Audio(label="Generated Audio")], title="Spirit LM WebUI Demo", description="Demo for generating text or audio using the Spirit LM model.", flagging_mode="never", ) # Launch the interface iface.launch() ``` # Spirit LM Checkpoints ## Download Checkpoints Checkpoints are in this repo Please note that Spirit LM is made available under the **FAIR Noncommercial Research License** License is here: https://github.com/facebookresearch/spiritlm/blob/main/LICENSE ## Structure The checkpoints directory should look like this: ``` checkpoints/ ├── README.md ├── speech_tokenizer │   ├── hifigan_spiritlm_base │   │   ├── config.json │   │   ├── generator.pt │   │   ├── speakers.txt │   │   └── styles.txt │   ├── hifigan_spiritlm_expressive_w2v2 │   │   ├── config.json │   │   ├── generator.pt │   │   └── speakers.txt │   ├── hubert_25hz │   │   ├── L11_quantizer_500.pt │   │   └── mhubert_base_25hz.pt │   ├── style_encoder_w2v2 │   │   ├── config.json │   │   └── pytorch_model.bin │   └── vqvae_f0_quantizer │   ├── config.yaml │   └── model.pt └── spiritlm_model ├── spirit-lm-base-7b │   ├── config.json │   ├── generation_config.json │   ├── pytorch_model.bin │   ├── special_tokens_map.json │   ├── tokenizer_config.json │   └── tokenizer.model └── spirit-lm-expressive-7b ├── config.json ├── generation_config.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── tokenizer.model ```