pranjalchitale
commited on
Update tokenization_indictrans.py
Browse files- tokenization_indictrans.py +42 -20
tokenization_indictrans.py
CHANGED
@@ -11,7 +11,10 @@ from transformers.tokenization_utils import PreTrainedTokenizer
|
|
11 |
logger = logging.get_logger(__name__)
|
12 |
|
13 |
SPIECE_UNDERLINE = "▁"
|
14 |
-
|
|
|
|
|
|
|
15 |
"asm_Beng",
|
16 |
"awa_Deva",
|
17 |
"ben_Beng",
|
@@ -46,7 +49,7 @@ SUPPORTED_LANGUAGES = [
|
|
46 |
"tel_Telu",
|
47 |
"urd_Arab",
|
48 |
"unr_Deva",
|
49 |
-
|
50 |
|
51 |
VOCAB_FILES_NAMES = {
|
52 |
"src_vocab_fp": "dict.SRC.json",
|
@@ -74,7 +77,7 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
74 |
eos_token="</s>",
|
75 |
pad_token="<pad>",
|
76 |
do_lower_case=False,
|
77 |
-
**kwargs
|
78 |
):
|
79 |
|
80 |
self.src = True
|
@@ -124,7 +127,10 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
124 |
pad_token=pad_token,
|
125 |
**kwargs,
|
126 |
)
|
127 |
-
|
|
|
|
|
|
|
128 |
def _switch_to_input_mode(self):
|
129 |
self.src = True
|
130 |
self.padding_side = "left"
|
@@ -150,6 +156,16 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
150 |
with open(path, "r", encoding="utf-8") as f:
|
151 |
return json.load(f)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
@property
|
154 |
def src_vocab_size(self) -> int:
|
155 |
return len(self.encoder)
|
@@ -183,27 +199,31 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
183 |
|
184 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
185 |
"""Uses sentencepiece model for detokenization"""
|
186 |
-
|
187 |
-
|
188 |
if self.src:
|
|
|
|
|
|
|
189 |
return (
|
190 |
-
" ".join(
|
191 |
+ " "
|
192 |
-
+ " ".join(
|
193 |
+ " "
|
194 |
-
+ "".join(
|
195 |
)
|
|
|
196 |
return (
|
197 |
"".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
198 |
+ " "
|
199 |
-
+ " ".join(
|
200 |
)
|
201 |
|
202 |
def _tokenize(self, text) -> List[str]:
|
203 |
if self.src:
|
204 |
tokens = text.split(" ")
|
205 |
-
tags = tokens
|
206 |
-
text = " ".join(
|
207 |
tokens = self.current_spm.EncodeAsPieces(text)
|
208 |
return tags + tokens
|
209 |
else:
|
@@ -217,23 +237,25 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
217 |
# We don't expect to process pairs, but leave the pair logic for API consistency
|
218 |
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
219 |
|
220 |
-
def save_vocabulary(
|
|
|
|
|
221 |
if not os.path.isdir(save_directory):
|
222 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
223 |
return
|
224 |
-
|
225 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
226 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
227 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
228 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
229 |
-
|
230 |
self._save_json(self.encoder, src_vocab_fp)
|
231 |
self._save_json(self.decoder, tgt_vocab_fp)
|
232 |
-
|
233 |
-
with open(src_spm_fp,
|
234 |
f.write(self.src_spm.serialized_model_proto())
|
235 |
-
|
236 |
-
with open(tgt_spm_fp,
|
237 |
f.write(self.tgt_spm.serialized_model_proto())
|
238 |
|
239 |
-
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|
|
|
11 |
logger = logging.get_logger(__name__)
|
12 |
|
13 |
SPIECE_UNDERLINE = "▁"
|
14 |
+
|
15 |
+
SPECIAL_TAGS = {
|
16 |
+
"_bt_",
|
17 |
+
"_ft_",
|
18 |
"asm_Beng",
|
19 |
"awa_Deva",
|
20 |
"ben_Beng",
|
|
|
49 |
"tel_Telu",
|
50 |
"urd_Arab",
|
51 |
"unr_Deva",
|
52 |
+
}
|
53 |
|
54 |
VOCAB_FILES_NAMES = {
|
55 |
"src_vocab_fp": "dict.SRC.json",
|
|
|
77 |
eos_token="</s>",
|
78 |
pad_token="<pad>",
|
79 |
do_lower_case=False,
|
80 |
+
**kwargs,
|
81 |
):
|
82 |
|
83 |
self.src = True
|
|
|
127 |
pad_token=pad_token,
|
128 |
**kwargs,
|
129 |
)
|
130 |
+
|
131 |
+
def add_new_special_tags(self, new_tags: List[str]):
|
132 |
+
SPECIAL_TAGS.update(new_tags)
|
133 |
+
|
134 |
def _switch_to_input_mode(self):
|
135 |
self.src = True
|
136 |
self.padding_side = "left"
|
|
|
156 |
with open(path, "r", encoding="utf-8") as f:
|
157 |
return json.load(f)
|
158 |
|
159 |
+
def _split_tags(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
160 |
+
tags = [token for token in tokens if token in SPECIAL_TAGS]
|
161 |
+
tokens = [token for token in tokens if token not in SPECIAL_TAGS]
|
162 |
+
return tags, tokens
|
163 |
+
|
164 |
+
def _split_pads(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
165 |
+
pads = [token for token in tokens if token == self.pad_token]
|
166 |
+
tokens = [token for token in tokens if token != self.pad_token]
|
167 |
+
return pads, tokens
|
168 |
+
|
169 |
@property
|
170 |
def src_vocab_size(self) -> int:
|
171 |
return len(self.encoder)
|
|
|
199 |
|
200 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
201 |
"""Uses sentencepiece model for detokenization"""
|
202 |
+
pads, tokens = self._split_pads(tokens)
|
203 |
+
|
204 |
if self.src:
|
205 |
+
|
206 |
+
tags, non_tags = self._split_tags(tokens)
|
207 |
+
|
208 |
return (
|
209 |
+
" ".join(pads)
|
210 |
+ " "
|
211 |
+
+ " ".join(tags)
|
212 |
+ " "
|
213 |
+
+ "".join(non_tags).replace(SPIECE_UNDERLINE, " ").strip()
|
214 |
)
|
215 |
+
|
216 |
return (
|
217 |
"".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
218 |
+ " "
|
219 |
+
+ " ".join(pads)
|
220 |
)
|
221 |
|
222 |
def _tokenize(self, text) -> List[str]:
|
223 |
if self.src:
|
224 |
tokens = text.split(" ")
|
225 |
+
tags, non_tags = self._split_tags(tokens)
|
226 |
+
text = " ".join(non_tags)
|
227 |
tokens = self.current_spm.EncodeAsPieces(text)
|
228 |
return tags + tokens
|
229 |
else:
|
|
|
237 |
# We don't expect to process pairs, but leave the pair logic for API consistency
|
238 |
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
239 |
|
240 |
+
def save_vocabulary(
|
241 |
+
self, save_directory: str, filename_prefix: Optional[str] = None
|
242 |
+
) -> Tuple[str]:
|
243 |
if not os.path.isdir(save_directory):
|
244 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
245 |
return
|
246 |
+
|
247 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
248 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
249 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
250 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
251 |
+
|
252 |
self._save_json(self.encoder, src_vocab_fp)
|
253 |
self._save_json(self.decoder, tgt_vocab_fp)
|
254 |
+
|
255 |
+
with open(src_spm_fp, "wb") as f:
|
256 |
f.write(self.src_spm.serialized_model_proto())
|
257 |
+
|
258 |
+
with open(tgt_spm_fp, "wb") as f:
|
259 |
f.write(self.tgt_spm.serialized_model_proto())
|
260 |
|
261 |
+
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|