--- language: - uz license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium UZB results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: uz split: None args: 'config: uz, split: test' metrics: - name: Wer type: wer value: 31.77905998468049 --- # Whisper Medium UZB - AISHA This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2859 - Wer: 31.7790 ## Model description More information needed ## Intended uses & limitations More information needed Founder: Rifat Mamayusupov ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5187 | 0.5392 | 1000 | 0.4935 | 44.1403 | | 0.3423 | 1.0785 | 2000 | 0.4008 | 37.6948 | | 0.3018 | 1.6177 | 3000 | 0.3739 | 36.3575 | | 0.2401 | 2.1569 | 4000 | 0.2821 | 31.7791 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1