File size: 8,275 Bytes
da396d2 a63e9c5 da396d2 a63e9c5 da396d2 a63e9c5 642c1f2 5a8a37a a63e9c5 5a8a37a a63e9c5 a8a0e75 a63e9c5 a8a0e75 a63e9c5 a8a0e75 a63e9c5 a8a0e75 a63e9c5 a8a0e75 a63e9c5 a8a0e75 a63e9c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
language: en
license: cc-by-nc-sa-4.0
datasets:
- RST-Discourse-Treebank
tags:
- rst-pointer
- feature-extraction
inference: false
model-index:
- name: RST Pointer
results:
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Trained)
type: evaluation dataset
metrics:
- name: Precision
type: precision
value: 0.939
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Reported)
type: evaluation dataset
metrics:
- name: Precision
type: precision
value: 0.941
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Trained)
type: evaluation dataset
metrics:
- name: Recall
type: recall
value: 0.979
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Reported)
type: evaluation dataset
metrics:
- name: Recall
type: recall
value: 0.966
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Trained)
type: evaluation dataset
metrics:
- name: F1
type: f1
value: 0.959
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Segmenter model test results (Reported)
type: evaluation dataset
metrics:
- name: F1
type: f1
value: 0.954
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Trained)
type: evaluation dataset
metrics:
- name: F1 Relation
type: relation
value: 0.813
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Reported)
type: evaluation dataset
metrics:
- name: F1 Relation
type: relation
value: 0.813
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Trained)
type: evaluation dataset
metrics:
- name: F1 Span
type: span
value: 0.966
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Reported)
type: evaluation dataset
metrics:
- name: F1 Span
type: span
value: 0.969
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Trained)
type: evaluation dataset
metrics:
- name: F1 Nuclearity
type: nuclearity
value: 0.909
- task:
type: feature-extraction
name: RST-Pointer
dataset:
name: Parser model test results (Reported)
type: evaluation dataset
metrics:
- name: F1 Nuclearity
type: nuclearity
value: 0.909
---
# RST Pointer
You can **test the model** at [Discourse Parsing](https://huggingface.co/spaces/aisingapore/discourse-parsing).<br />
If you want to find out more information, please contact us at [email protected].
## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Model Parameters](#parameters)
- [Other Information](#other-information)
- [License](#license)
## Model Details
**Model Name:** RST-Pointer
- **Description:** This is a pointer network-based segmenter and parser that is trained to identify the relations between different sections of a sentence according to rhetorical structure theory (RST).
- **Paper:** A Unified Linear-Time Framework for Sentence-Level Discourse Parsing. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, July 2019 (pp. 4190-4200).
- **Author(s):** Lin, X., Joty, S., Jwalapuram, P., & Bari, M. S. (2019).
- **URL:** https://aclanthology.org/P19-1410/
# How to Get Started With the Model
## Install Python package
SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than aspect sentiment analysis are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp).
```python
pip install sgnlp
```
## Examples
For more full code (such as RST-Pointer), please refer to this [github](https://github.com/aisingapore/sgnlp). <br> Alternatively, you can also try out the [demo](https://huggingface.co/spaces/aisingapore/discourse-parsing) for Discourse-Parsing.
Example of RST-Pointer modelling on Discourse Parsing:
```python
from sgnlp.models.rst_pointer import (
RstPointerParserConfig,
RstPointerParserModel,
RstPointerSegmenterConfig,
RstPointerSegmenterModel,
RstPreprocessor,
RstPostprocessor
)
# Load processors and models
preprocessor = RstPreprocessor()
postprocessor = RstPostprocessor()
segmenter_config = RstPointerSegmenterConfig.from_pretrained(
'https://storage.googleapis.com/sgnlp-models/models/rst_pointer/segmenter/config.json')
segmenter = RstPointerSegmenterModel.from_pretrained(
'https://storage.googleapis.com/sgnlp-models/models/rst_pointer/segmenter/pytorch_model.bin',
config=segmenter_config)
segmenter.eval()
parser_config = RstPointerParserConfig.from_pretrained(
'https://storage.googleapis.com/sgnlp-models/models/rst_pointer/parser/config.json')
parser = RstPointerParserModel.from_pretrained(
'https://storage.googleapis.com/sgnlp-models/models/rst_pointer/parser/pytorch_model.bin',
config=parser_config)
parser.eval()
sentences = [
"Thumbs began to be troublesome about 4 months ago and I made an appointment with the best hand surgeon in the "
"Valley to see if my working activities were the problem.",
"Every rule has exceptions, but the tragic and too-common tableaux of hundreds or even thousands of people "
"snake-lining up for any task with a paycheck illustrates a lack of jobs, not laziness."
]
tokenized_sentences_ids, tokenized_sentences, lengths = preprocessor(sentences)
segmenter_output = segmenter(tokenized_sentences_ids, lengths)
end_boundaries = segmenter_output.end_boundaries
parser_output = parser(tokenized_sentences_ids, end_boundaries, lengths)
trees = postprocessor(sentences=sentences, tokenized_sentences=tokenized_sentences,
end_boundaries=end_boundaries,
discourse_tree_splits=parser_output.splits)
```
# Training
The dataset (RST Discourse Treebank) that the model is trained on is a licensed dataset.
- **Training Config:** [Segmenter](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/segmenter/training_config.json) | [Parser](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/parser/training_config.json)
#### Training Results
- **Training Time (Segmenter):** ~2 hours for 100 epochs on a single V100 GPU for segmenter model.
- **Training Time (Parser):** ~6 hours for 200 epochs on a single V100 GPU for parser model
# Model Parameters
- **Model Weights:** [Segmenter](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/segmenter/pytorch_model.bin) | [Parser](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/parser/pytorch_model.bin)
- **Model Config:** [Segmenter](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/segmenter/config.json) | [Parser](https://storage.googleapis.com/sgnlp-models/models/rst_pointer/parser/config.json)
- **Model Inputs:** A sentence.
- **Model Outputs:** Discourse parsed tree.
- **Model Size:** ~362MB for segmenter model, ~361MB for parser model
- **Model Inference Info:** Not available.
- **Usage Scenarios:** Construct additional features for downstream NLP tasks.
# Other Information
- **Original Code:** [link](https://github.com/shawnlimn/UnifiedParser_RST)
# License
- **Model:** Released under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
- **Code:** Released under [MIT License](https://choosealicense.com/licenses/mit)
|