--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper_Small_Ar500d results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 Arabic type: mozilla-foundation/common_voice_17_0 config: ar split: validation args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 23.472893495603564 --- # Whisper_Small_Ar500d This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 Arabic dataset. It achieves the following results on the evaluation set: - Loss: 0.2154 - Wer Ortho: 40.5973 - Wer: 23.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.2544 | 0.6002 | 500 | 0.2154 | 40.5973 | 23.4729 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3