--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lm-ner-linkedin-skills-recognition results: [] --- # lm-ner-linkedin-skills-recognition This model is a fine-tuned version of [algiraldohe/distilbert-base-uncased-linkedin-domain-adaptation](https://huggingface.co/algiraldohe/distilbert-base-uncased-linkedin-domain-adaptation) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0307 - Precision: 0.9119 - Recall: 0.9312 - F1: 0.9214 - Accuracy: 0.9912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1301 | 1.0 | 729 | 0.0468 | 0.8786 | 0.8715 | 0.8750 | 0.9863 | | 0.0432 | 2.0 | 1458 | 0.0345 | 0.8994 | 0.9219 | 0.9105 | 0.9900 | | 0.0332 | 3.0 | 2187 | 0.0307 | 0.9119 | 0.9312 | 0.9214 | 0.9912 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3