File size: 22,300 Bytes
b860ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af20412
b860ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# CogVideoX-Fun

๐Ÿ˜Š Welcome!

[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/alibaba-pai/CogVideoX-Fun-5b)

English | [็ฎ€ไฝ“ไธญๆ–‡](./README.md)

# Table of Contents
- [Table of Contents](#table-of-contents)
- [Introduction](#introduction)
- [Quick Start](#quick-start)
- [Video Result](#video-result)
- [How to use](#how-to-use)
- [Model zoo](#model-zoo)
- [TODO List](#todo-list)
- [Reference](#reference)
- [License](#license)

# Introduction
CogVideoX-Fun is a modified pipeline based on the CogVideoX structure, designed to provide more flexibility in generation. It can be used to create AI images and videos, as well as to train baseline models and Lora models for Diffusion Transformer. We support predictions directly from the already trained CogVideoX-Fun model, allowing the generation of videos at different resolutions, approximately 6 seconds long with 8 fps (1 to 49 frames). Users can also train their own baseline models and Lora models to achieve certain style transformations.

We will support quick pull-ups from different platforms, refer to [Quick Start](#quick-start).

What's New:
- Use reward backpropagation to train Lora and optimize the video, aligning it better with human preferences, detailes in [here](scripts/README_TRAIN_REWARD.md). A new version of the control model supports various conditions (e.g., Canny, Depth, Pose, MLSD, etc.). [2024.11.21]
- CogVideoX-Fun Control is now supported in diffusers. Thanks to [a-r-r-o-w](https://github.com/a-r-r-o-w) who contributed the support in this [PR](https://github.com/huggingface/diffusers/pull/9671). Check out the [docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox) to know more. [ 2024.10.16 ]
- Retrain the i2v model and add noise to increase the motion amplitude of the video. Upload the control model training code and control model. [ 2024.09.29 ]
- Create code! Now supporting Windows and Linux. Supports 2b and 5b models. Supports video generation at any resolution from 256x256x49 to 1024x1024x49. [ 2024.09.18 ]

Function๏ผš
- [Data Preprocessing](#data-preprocess)
- [Train DiT](#dit-train)
- [Video Generation](#video-gen)

Our UI interface is as follows:
![ui](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/ui.jpg)

# Quick Start
### 1. Cloud usage: AliyunDSW/Docker
#### a. From AliyunDSW
DSW has free GPU time, which can be applied once by a user and is valid for 3 months after applying.

Aliyun provide free GPU time in [Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1), get it and use in Aliyun PAI-DSW to start CogVideoX-Fun within 5min!

[![DSW Notebook](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/dsw.png)](https://gallery.pai-ml.com/#/preview/deepLearning/cv/cogvideox_fun)

#### b. From ComfyUI
Our ComfyUI is as follows, please refer to [ComfyUI README](comfyui/README.md) for details.
![workflow graph](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/cogvideoxfunv1_workflow_i2v.jpg)

#### c. From docker
If you are using docker, please make sure that the graphics card driver and CUDA environment have been installed correctly in your machine.

Then execute the following commands in this way:

```
# pull image
docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun

# enter image
docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:cogvideox_fun

# clone code
git clone https://github.com/aigc-apps/CogVideoX-Fun.git

# enter CogVideoX-Fun's dir
cd CogVideoX-Fun

# download weights
mkdir models/Diffusion_Transformer
mkdir models/Personalized_Model

wget https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP.tar.gz -O models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP.tar.gz

cd models/Diffusion_Transformer/
tar -xvf CogVideoX-Fun-V1.1-2b-InP.tar.gz
cd ../../
```

### 2. Local install: Environment Check/Downloading/Installation
#### a. Environment Check
We have verified CogVideoX-Fun execution on the following environment:

The detailed of Windows:
- OS: Windows 10
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU๏ผš Nvidia-3060 12G & Nvidia-3090 24G

The detailed of Linux:
- OS: Ubuntu 20.04, CentOS
- python: python3.10 & python3.11
- pytorch: torch2.2.0
- CUDA: 11.8 & 12.1
- CUDNN: 8+
- GPU๏ผšNvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G

We need about 60GB available on disk (for saving weights), please check!

#### b. Weights
We'd better place the [weights](#model-zoo) along the specified path:

```
๐Ÿ“ฆ models/
โ”œโ”€โ”€ ๐Ÿ“‚ Diffusion_Transformer/
โ”‚   โ”œโ”€โ”€ ๐Ÿ“‚ CogVideoX-Fun-V1.1-2b-InP/
โ”‚   โ””โ”€โ”€ ๐Ÿ“‚ CogVideoX-Fun-V1.1-5b-InP/
โ”œโ”€โ”€ ๐Ÿ“‚ Personalized_Model/
โ”‚   โ””โ”€โ”€ your trained trainformer model / your trained lora model (for UI load)
```

# Video Result
The results displayed are all based on image. 

### CogVideoX-Fun-V1.1-5B

Resolution-1024

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/34e7ec8f-293e-4655-bb14-5e1ee476f788" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/7809c64f-eb8c-48a9-8bdc-ca9261fd5434" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/8e76aaa4-c602-44ac-bcb4-8b24b72c386c" width="100%" controls autoplay loop></video>
     </td>
      <td>
          <video src="https://github.com/user-attachments/assets/19dba894-7c35-4f25-b15c-384167ab3b03" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>


Resolution-768

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/0bc339b9-455b-44fd-8917-80272d702737" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/70a043b9-6721-4bd9-be47-78b7ec5c27e9" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/d5dd6c09-14f3-40f8-8b6d-91e26519b8ac" width="100%" controls autoplay loop></video>
     </td>
      <td>
          <video src="https://github.com/user-attachments/assets/9327e8bc-4f17-46b0-b50d-38c250a9483a" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

Resolution-512

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/ef407030-8062-454d-aba3-131c21e6b58c" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/7610f49e-38b6-4214-aa48-723ae4d1b07e" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/1fff0567-1e15-415c-941e-53ee8ae2c841" width="100%" controls autoplay loop></video>
     </td>
      <td>
          <video src="https://github.com/user-attachments/assets/bcec48da-b91b-43a0-9d50-cf026e00fa4f" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

### CogVideoX-Fun-V1.1-5B with Reward Backpropagation

<table border="0" style="width: 100%; text-align: center; margin-top: 20px;">
    <thead>
        <tr>
            <th style="text-align: center;" width="10%">Prompt</sup></th>
            <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B</th>
            <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B <br> HPSv2.1 Reward LoRA</th>
            <th style="text-align: center;" width="30%">CogVideoX-Fun-V1.1-5B <br> MPS Reward LoRA</th>
        </tr>
    </thead>
    <tr>
        <td>
            Pig with wings flying above a diamond mountain
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/6682f507-4ca2-45e9-9d76-86e2d709efb3" width="100%" controls autoplay loop></video>
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/ec9219a2-96b3-44dd-b918-8176b2beb3b0" width="100%" controls autoplay loop></video>
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/a75c6a6a-0b69-4448-afc0-fda3c7955ba0" width="100%" controls autoplay loop></video>
        </td>
    </tr>
    <tr>
        <td>
            A dog runs through a field while a cat climbs a tree
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/0392d632-2ec3-46b4-8867-0da1db577b6d" width="100%" controls autoplay loop></video>
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/7d8c729d-6afb-408e-b812-67c40c3aaa96" width="100%" controls autoplay loop></video>
        </td>
        <td>
            <video src="https://github.com/user-attachments/assets/dcd1343c-7435-4558-b602-9c0fa08cbd59" width="100%" controls autoplay loop></video>
        </td>
    </tr>
</table>

### CogVideoX-Fun-V1.1-5B-Control

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/fce43c0b-81fa-4ab2-9ca7-78d786f520e6" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/b208b92c-5add-4ece-a200-3dbbe47b93c3" width="100%" controls autoplay loop></video>
     </td>
  <tr>
      <td>
          A young woman with beautiful clear eyes and blonde hair, wearing white clothes and twisting her body, with the camera focused on her face. High quality, masterpiece, best quality, high resolution, ultra-fine, dreamlike.
      </td>
      <td>
          A young woman with beautiful clear eyes and blonde hair, wearing white clothes and twisting her body, with the camera focused on her face. High quality, masterpiece, best quality, high resolution, ultra-fine, dreamlike.
      </td>
       <td>
          A young bear.
     </td>
  </tr>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/ea908454-684b-4d60-b562-3db229a250a9" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/ffb7c6fc-8b69-453b-8aad-70dfae3899b9" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/d3f757a3-3551-4dcb-9372-7a61469813f5" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

### CogVideoX-Fun-V1.1-5B-Pose

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          Resolution-512
      </td>
      <td>
          Resolution-768
      </td>
       <td>
          Resolution-1024
      </td>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/a746df51-9eb7-4446-bee5-2ee30285c143" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/db295245-e6aa-43be-8c81-32cb411f1473" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/ec9875b2-fde0-48e1-ab7e-490cee51ef40" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

### CogVideoX-Fun-V1.1-2B

Resolution-768

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/03235dea-980e-4fc5-9c41-e40a5bc1b6d0" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/f7302648-5017-47db-bdeb-4d893e620b37" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/cbadf411-28fa-4b87-813d-da63ff481904" width="100%" controls autoplay loop></video>
     </td>
      <td>
          <video src="https://github.com/user-attachments/assets/87cc9d0b-b6fe-4d2d-b447-174513d169ab" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

### CogVideoX-Fun-V1.1-2B-Pose

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          Resolution-512
      </td>
      <td>
          Resolution-768
      </td>
       <td>
          Resolution-1024
      </td>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/487bcd7b-1b7f-4bb4-95b5-96a6b6548b3e" width="100%" controls autoplay loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/2710fd18-8489-46e4-8086-c237309ae7f6" width="100%" controls autoplay loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/b79513db-7747-4512-b86c-94f9ca447fe2" width="100%" controls autoplay loop></video>
     </td>
  </tr>
</table>

# How to use

<h3 id="video-gen">1. Inference </h3>

#### a. Using Python Code
- Step 1: Download the corresponding [weights](#model-zoo) and place them in the models folder.
- Step 2: Modify prompt, neg_prompt, guidance_scale, and seed in the predict_t2v.py file.
- Step 3: Run the predict_t2v.py file, wait for the generated results, and save the results in the samples/cogvideox-fun-videos-t2v folder.
- Step 4: If you want to combine other backbones you have trained with Lora, modify the predict_t2v.py and Lora_path in predict_t2v.py depending on the situation.

#### b. Using webui
- Step 1: Download the corresponding [weights](#model-zoo) and place them in the models folder.
- Step 2: Run the app.py file to enter the graph page.
- Step 3: Select the generated model based on the page, fill in prompt, neg_prompt, guidance_scale, and seed, click on generate, wait for the generated result, and save the result in the samples folder.

#### c. From ComfyUI
Please refer to [ComfyUI README](comfyui/README.md) for details.

### 2. Model Training
A complete CogVideoX-Fun training pipeline should include data preprocessing, and Video DiT training. 

<h4 id="data-preprocess">a. data preprocessing</h4>

We have provided a simple demo of training the Lora model through image data, which can be found in the [wiki](https://github.com/aigc-apps/CogVideoX-Fun/wiki/Training-Lora) for details.

A complete data preprocessing link for long video segmentation, cleaning, and description can refer to [README](cogvideox/video_caption/README.md) in the video captions section. 

If you want to train a text to image and video generation model. You need to arrange the dataset in this format.

```
๐Ÿ“ฆ project/
โ”œโ”€โ”€ ๐Ÿ“‚ datasets/
โ”‚   โ”œโ”€โ”€ ๐Ÿ“‚ internal_datasets/
โ”‚       โ”œโ”€โ”€ ๐Ÿ“‚ train/
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ 00000001.mp4
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ 00000002.jpg
โ”‚       โ”‚   โ””โ”€โ”€ ๐Ÿ“„ .....
โ”‚       โ””โ”€โ”€ ๐Ÿ“„ json_of_internal_datasets.json
```

The json_of_internal_datasets.json is a standard JSON file. The file_path in the json can to be set as relative path, as shown in below:
```json
[
    {
      "file_path": "train/00000001.mp4",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "video"
    },
    {
      "file_path": "train/00000002.jpg",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "image"
    },
    .....
]
```

You can also set the path as absolute path as follow:
```json
[
    {
      "file_path": "/mnt/data/videos/00000001.mp4",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "video"
    },
    {
      "file_path": "/mnt/data/train/00000001.jpg",
      "text": "A group of young men in suits and sunglasses are walking down a city street.",
      "type": "image"
    },
    .....
]
```

<h4 id="dit-train">b. Video DiT training </h4>
 
If the data format is relative path during data preprocessing, please set ```scripts/train.sh``` as follow.
```
export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/json_of_internal_datasets.json"
```

If the data format is absolute path during data preprocessing, please set ```scripts/train.sh``` as follow.
```
export DATASET_NAME=""
export DATASET_META_NAME="/mnt/data/json_of_internal_datasets.json"
```

Then, we run scripts/train.sh.
```sh
sh scripts/train.sh
```

For details on setting some parameters, please refer to [Readme Train](scripts/README_TRAIN.md), [Readme Lora](scripts/README_TRAIN_LORA.md) and [Readme Control](scripts/README_TRAIN_CONTROL.md).  


# Model zoo

V1.5:

| Name | Storage Space | Hugging Face | Model Scope | Description |
|--|--|--|--|--|
| CogVideoX-Fun-V1.5-5b-InP |  20.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.5-5b-InP) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.5-5b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024) and has been trained on 85 frames at a rate of 8 frames per second. |

V1.1:

| Name | Storage Space | Hugging Face | Model Scope | Description |
|--|--|--|--|--|
| CogVideoX-Fun-V1.1-2b-InP | 13.0 GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-InP) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |
| CogVideoX-Fun-V1.1-5b-InP | 20.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Noise has been added to the reference image, and the amplitude of motion is greater compared to V1.0. |
| CogVideoX-Fun-V1.1-2b-Pose | 13.0 GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-Pose) | Our official pose-control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second.|
| CogVideoX-Fun-V1.1-2b-Control | 13.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Control) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-2b-Control) | Our official control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Supporting various control conditions such as Canny, Depth, Pose, MLSD, etc.|
| CogVideoX-Fun-V1.1-5b-Pose | 20.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-Pose) | Our official pose-control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second.|
| CogVideoX-Fun-V1.1-5b-Control | 20.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Control) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-5b-Control) | Our official control video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. Supporting various control conditions such as Canny, Depth, Pose, MLSD, etc.|
| CogVideoX-Fun-V1.1-Reward-LoRAs | - | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-V1.1-Reward-LoRAs) | The official reward backpropagation technology model optimizes the videos generated by CogVideoX-Fun-V1.1 to better match human preferences. ๏ฝœ

V1.0:

| Name | Storage Space | Hugging Face | Model Scope | Description |
|--|--|--|--|--|
| CogVideoX-Fun-2b-InP | 13.0 GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-2b-InP) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-2b-InP) | Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |
| CogVideoX-Fun-5b-InP | 20.0 GB  | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-5b-InP)| [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/CogVideoX-Fun-5b-InP)| Our official graph-generated video model is capable of predicting videos at multiple resolutions (512, 768, 1024, 1280) and has been trained on 49 frames at a rate of 8 frames per second. |

# TODO List
- Support Chinese.

# Reference
- CogVideo: https://github.com/THUDM/CogVideo/
- EasyAnimate: https://github.com/aigc-apps/EasyAnimate

# License
This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).

The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under the [Apache 2.0 License](LICENSE).

The CogVideoX-5B model (Transformers module) is released under the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).