--- model-index: - name: llama-3.1-tulu-2-70b-uf-mean-rm results: [] datasets: - allenai/tulu-2.5-preference-data - allenai/tulu-v2-sft-mixture language: - en base_model: allenai/llama-3.1-tulu-2-70b license: apache-2.0 ---
Tulu 2.5 banner image
# Model Card for Llama 3.1 Tulu V2 70B RM - UltraFeedback Tulu is a series of language models that are trained to act as helpful assistants. This is a 70B reward model used for PPO training trained on the UltraFeedback dataset. For more details, read the paper: [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279). Note this model is finetuned from Llama 3.1, released under the Meta Llama 3.1 community license, included here under `llama_3_license.txt`. ## Performance We evaluate the model on [RewardBench](https://github.com/allenai/reward-bench): | Model | Score | Chat | Chat Hard | Safety | Reasoning | |------------------|-------|-------|-----------|--------|-----------| | [Llama 3.1 Tulu 2 8b UF RM](https://huggingface.co/allenai/llama-3.1-tulu-2-8b-uf-mean-rm) | 73.3 | 98.0 | 59.6 | 60.6 | 74.7 | | **[Llama 3.1 Tulu 2 70b UF RM](https://huggingface.co/allenai/llama-3.1-tulu-2-70b-uf-mean-rm) (this model)** | 70.2 | 96.4 | 56.4 | 65.8 | 62.3 | ## Model description - **Model type:** A reward model trained on UltraFeedback, designed to be used in RLHF training. - **Language(s) (NLP):** English - **License:** Apache 2.0. - **Finetuned from model:** [allenai/llama-3.1-tulu-2-70b](https://huggingface.co/allenai/llama-3.1-tulu-2-70b) ### Model Sources - **Repository:** https://github.com/allenai/open-instruct - **Dataset:** Data used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split. ## Input Format The model is trained to use the following format (note the newlines): ``` <|user|> Your message here! <|assistant|> ``` For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.** We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template. ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. We then further trained the model with a [Jax RM trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_rm.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above. This model is meant as a research artefact. ### Training hyperparameters The following hyperparameters were used during RM training: - learning_rate: 5e-06 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear cooldown to 0. - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ## Citation If you find Tulu 2.5 is useful in your work, please cite it with: ``` @misc{ivison2024unpacking, title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}}, author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}} year={2024}, eprint={2406.09279}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```