--- license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer model-index: - name: DATASET_PACSUM results: [] --- # DATASET_PACSUM This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8648 | 0.1 | 10 | 2.8816 | | 2.9889 | 0.2 | 20 | 2.7866 | | 3.0516 | 0.3 | 30 | 2.7394 | | 2.6605 | 0.4 | 40 | 2.7132 | | 2.8093 | 0.5 | 50 | 2.6759 | | 2.9206 | 0.6 | 60 | 2.6607 | | 2.8094 | 0.7 | 70 | 2.6576 | | 2.5233 | 0.8 | 80 | 2.6327 | | 2.6508 | 0.9 | 90 | 2.6117 | | 2.8456 | 1.0 | 100 | 2.5861 | | 2.4622 | 1.1 | 110 | 2.5942 | | 2.2871 | 1.2 | 120 | 2.5751 | | 2.4482 | 1.3 | 130 | 2.5776 | | 2.4079 | 1.4 | 140 | 2.5777 | | 2.2842 | 1.5 | 150 | 2.5621 | | 2.6267 | 1.6 | 160 | 2.5463 | | 2.3895 | 1.7 | 170 | 2.5503 | | 2.2786 | 1.8 | 180 | 2.5470 | | 2.3628 | 1.9 | 190 | 2.5420 | | 2.2809 | 2.0 | 200 | 2.5367 | | 2.2726 | 2.1 | 210 | 2.5405 | | 2.1934 | 2.2 | 220 | 2.5676 | | 2.2447 | 2.3 | 230 | 2.5399 | | 2.4508 | 2.4 | 240 | 2.5435 | | 2.2969 | 2.5 | 250 | 2.5490 | | 2.4206 | 2.6 | 260 | 2.5317 | | 2.0131 | 2.7 | 270 | 2.5378 | | 2.0025 | 2.8 | 280 | 2.5492 | | 2.2179 | 2.9 | 290 | 2.5280 | | 2.2082 | 3.0 | 300 | 2.5190 | | 1.9491 | 3.1 | 310 | 2.5608 | | 2.291 | 3.2 | 320 | 2.5448 | | 2.0431 | 3.3 | 330 | 2.5319 | | 2.0671 | 3.4 | 340 | 2.5529 | | 2.1939 | 3.5 | 350 | 2.5388 | | 2.0606 | 3.6 | 360 | 2.5306 | | 2.0088 | 3.7 | 370 | 2.5557 | | 2.1919 | 3.8 | 380 | 2.5317 | | 2.2516 | 3.9 | 390 | 2.5290 | | 1.9401 | 4.0 | 400 | 2.5404 | | 2.1101 | 4.1 | 410 | 2.5354 | | 1.8906 | 4.2 | 420 | 2.5520 | | 1.9808 | 4.3 | 430 | 2.5488 | | 1.8195 | 4.4 | 440 | 2.5496 | | 1.8512 | 4.5 | 450 | 2.5535 | | 2.0464 | 4.6 | 460 | 2.5519 | | 2.0176 | 4.7 | 470 | 2.5450 | | 2.0686 | 4.8 | 480 | 2.5460 | | 2.0267 | 4.9 | 490 | 2.5463 | | 1.8617 | 5.0 | 500 | 2.5461 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1