|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import HubertForSequenceClassification |
|
from transformers.activations import ACT2FN |
|
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled |
|
from transformers.file_utils import ModelOutput |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.models.hubert import HubertConfig |
|
from transformers.models.hubert.modeling_hubert import HubertPreTrainedModel, HubertFeatureEncoder, \ |
|
HubertFeatureProjection, _compute_mask_indices, \ |
|
HubertPositionalConvEmbedding, HubertAttention |
|
import torch.nn.functional as F |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_HIDDEN_STATES_START_POSITION = 1 |
|
|
|
|
|
_CONFIG_FOR_DOC = "HubertConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768] |
|
|
|
|
|
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" |
|
_CTC_EXPECTED_LOSS = 22.68 |
|
|
|
|
|
_SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks" |
|
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" |
|
_SEQ_CLASS_EXPECTED_LOSS = 8.53 |
|
|
|
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"facebook/hubert-base-ls960", |
|
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
|
|
@dataclass |
|
class SpeechClassifierOutput(ModelOutput): |
|
""" |
|
Speech Classifier Output dataclass |
|
""" |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class ExHuBERTFeedForward(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.intermediate_dropout = nn.Dropout(config.activation_dropout) |
|
|
|
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.output_dropout = nn.Dropout(config.hidden_dropout) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.intermediate_dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
hidden_states = self.intermediate_dropout(hidden_states) |
|
|
|
hidden_states = self.output_dense(hidden_states) |
|
hidden_states = self.output_dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class ExHuBERTEncoderLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention = HubertAttention( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=False, |
|
) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.feed_forward = ExHuBERTFeedForward(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.gate_bb_linear = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
): |
|
attn_residual = hidden_states |
|
hidden_states = self.layer_norm(hidden_states) |
|
hidden_states, attn_weights, _ = self.attention( |
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions |
|
) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = attn_residual + hidden_states |
|
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) |
|
|
|
hidden_states = self.gate_bb_linear(hidden_states) |
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class ExHuBERTEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.pos_conv_embed = HubertPositionalConvEmbedding(config) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
self.layers = nn.ModuleList( |
|
[ExHuBERTEncoderLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
if attention_mask is not None: |
|
|
|
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) |
|
hidden_states[~expand_attention_mask] = 0 |
|
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) |
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min |
|
attention_mask = attention_mask.expand( |
|
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] |
|
) |
|
|
|
position_embeddings = self.pos_conv_embed(hidden_states) |
|
hidden_states = hidden_states + position_embeddings |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() |
|
|
|
skip = torch.zeros_like(hidden_states) |
|
skip_bool = False |
|
for layer in self.layers: |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
dropout_probability = torch.rand([]) |
|
|
|
|
|
skip_the_layer = False |
|
if not skip_the_layer or deepspeed_zero3_is_enabled: |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer( |
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if skip_the_layer: |
|
layer_outputs = (None, None) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if skip_bool is True: |
|
hidden_states = hidden_states + skip |
|
|
|
skip_bool = False |
|
else: |
|
skip = hidden_states |
|
skip_bool = True |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ExHuBERT_model_(HubertPreTrainedModel): |
|
def __init__(self, config: HubertConfig): |
|
super().__init__(config) |
|
setattr(config, 'num_hidden_layers', 48) |
|
self.config = config |
|
self.feature_extractor = HubertFeatureEncoder(config) |
|
self.feature_projection = HubertFeatureProjection(config) |
|
|
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: |
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) |
|
|
|
self.encoder = ExHuBERTEncoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def _mask_hidden_states( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
mask_time_indices: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
""" |
|
Masks extracted features along time axis and/or along feature axis according to |
|
[SpecAugment](https://arxiv.org/abs/1904.08779). |
|
""" |
|
|
|
|
|
if not getattr(self.config, "apply_spec_augment", True): |
|
return hidden_states |
|
|
|
|
|
batch_size, sequence_length, hidden_size = hidden_states.size() |
|
|
|
if mask_time_indices is not None: |
|
|
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) |
|
elif self.config.mask_time_prob > 0 and self.training: |
|
mask_time_indices = _compute_mask_indices( |
|
(batch_size, sequence_length), |
|
mask_prob=self.config.mask_time_prob, |
|
mask_length=self.config.mask_time_length, |
|
attention_mask=attention_mask, |
|
min_masks=self.config.mask_time_min_masks, |
|
) |
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) |
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) |
|
|
|
if self.config.mask_feature_prob > 0 and self.training: |
|
|
|
mask_feature_indices = _compute_mask_indices( |
|
(batch_size, hidden_size), |
|
mask_prob=self.config.mask_feature_prob, |
|
mask_length=self.config.mask_feature_length, |
|
min_masks=self.config.mask_feature_min_masks, |
|
) |
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) |
|
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) |
|
hidden_states[mask_feature_indices] = 0 |
|
|
|
return hidden_states |
|
|
|
def forward( |
|
self, |
|
input_values: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
mask_time_indices: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) |
|
|
|
hidden_states = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class ExHuBERT(HubertPreTrainedModel,PyTorchModelHubMixin): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
setattr(config, "num_labels", 6) |
|
if hasattr(config, "add_adapter") and config.add_adapter: |
|
raise ValueError( |
|
"Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)" |
|
) |
|
self.hubert = ExHuBERT_model_(config) |
|
num_layers = config.num_hidden_layers + 1 |
|
if config.use_weighted_layer_sum: |
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) |
|
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) |
|
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def freeze_feature_encoder(self): |
|
""" |
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will |
|
not be updated during training. |
|
""" |
|
self.hubert.feature_extractor._freeze_parameters() |
|
|
|
def freeze_base_model(self): |
|
""" |
|
Calling this function will disable the gradient computation for the base model so that its parameters will not |
|
be updated during training. Only the classification head will be updated. |
|
""" |
|
for param in self.hubert.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward( |
|
self, |
|
input_values: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, SpeechClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states |
|
|
|
outputs = self.hubert( |
|
input_values, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if self.config.use_weighted_layer_sum: |
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] |
|
hidden_states = torch.stack(hidden_states, dim=1) |
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) |
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) |
|
else: |
|
hidden_states = outputs[0] |
|
|
|
hidden_states = self.projector(hidden_states) |
|
if attention_mask is None: |
|
pooled_output = hidden_states.mean(dim=1) |
|
else: |
|
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) |
|
hidden_states[~padding_mask] = 0.0 |
|
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SpeechClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def freeze_og_encoder(self): |
|
for param in self.hubert.encoder.layers[::2].parameters(): |
|
param.requires_grad = False |
|
|
|
def print_trainable_parameters(model): |
|
''' |
|
prints all trainable parameters of a model |
|
''' |
|
trainable_params = 0 |
|
all_param = 0 |
|
for _, param in model.named_parameters(): |
|
all_param += param.numel() |
|
if param.requires_grad: |
|
trainable_params += param.numel() |
|
print( |
|
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.2f}" |
|
) |
|
|
|
|