extras / configuration_omnivore.py
anugunj's picture
a
21d5ffb
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Omnivore model configuration"""
from torch import nn
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
OMNIVORE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"anugunj/omnivore": "https://huggingface.co/anugunj/omnivore/resolve/main/config.json",
}
class OmnivoreConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OmnivoreModel`]. It is used to instantiate an
Omnivore model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Omnivore
[anugunj/omnivore](https://huggingface.co/anugunj/omnivore) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
input_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_size (`int` | `List[int]`, *optional*, defaults to [4, 4, 4]):
Patch size to use in the patch embedding layer.
embed_dim (`int`, *optional*, defaults to 96):
Number of linear projection output channels.
depths (`List[int]`, *optional*, defaults to [2, 2, 6, 2],):
Depth (number of layers) for each stage.
num_heads (`List[int]`, *optional*, defaults to [3, 6, 12, 24]):
Number of attention head of each stage.
window_size (`int`, *optional*, defaults to 7)
Size of the window used by swin transformer in the model,
mlp_ratios (`float`, *optional*, defaults to 4.0):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
attention_dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio for the patch embeddings probabilities and projections in attention.
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
qkv_bias (`bool`, *optional*, defaults to True):
The bias bool for query, key and value in attentions
qk_scale (`bool`, *optional*, defaults to None):
Override default qk scale of head_dim ** -0.5 if set.
norm_layer (`nn.Module`, *optional*, defaults to nn.LayerNorm):
Normalization layer for the model
patch_norm (`bool`, *optional*, defaults to False):
If True, add normalization after patch embedding.
frozen_stages (`int`, *optional*, defaults to -1):
Stages to be frozen (stop grad and set eval mode) -1 means not freezing any parameters.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import OmnivoreModel, OmnivoreConfig
>>> # Initializing a Omnivore omnivore-tiny-224 style configuration
>>> configuration = OmnivoreConfig()
>>> # Initializing a model from the omnivore-tiny-224 style configuration
>>> model = OmnivoreModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "omnivore"
def __init__(
self,
input_channels=3,
patch_size=[2, 4, 4],
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=(8, 7, 7),
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
drop_path_rate=0.3,
patch_norm=True,
frozen_stages=-1,
depth_mode="summed_rgb_d_tokens",
initializer_range=0.02,
**kwargs
):
super().__init__(**kwargs)
self.input_channels = input_channels
self.patch_size = patch_size
self.embed_dim = embed_dim
self.depths = depths
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.qk_scale = qk_scale
self.dropout_rate = dropout_rate
self.attention_dropout_rate = attention_dropout_rate
self.drop_path_rate = drop_path_rate
self.patch_norm = patch_norm
self.frozen_stages = frozen_stages
self.initializer_range = initializer_range
self.head_dim_in = embed_dim * 8
self.depth_mode = depth_mode
self.num_image_labels = 1000
self.num_video_labels = 400
self.num_rgbd_labels = 19