extras / modelling.py
anugunj's picture
a
21d5ffb
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Omnivore model."""
import math
import warnings
from dataclasses import dataclass
from functools import lru_cache, reduce
from operator import mul
from typing import Optional, Tuple
import numpy as np
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint as checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from transformers.utils.generic import ModelOutput
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_omnivore import OmnivoreConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "OmnivoreConfig"
_FEAT_EXTRACTOR_FOR_DOC = "OmniverseFeatureExtractor"
# Base docstring
_CHECKPOINT_FOR_DOC = "anugunj/omnivore"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "anugunj/omnivore"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
OMNIVORE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"anugunj/omnivore",
# See all Omnivore models at https://huggingface.co/models?filter=omnivore
]
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
Args:
normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean},
\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for
generating the random values works best when :math:`a \leq \text{mean} \leq b`.
tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation
of the normal distribution a: the minimum cutoff value b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
# Stochastic depth implementation
# Taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the
DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop
Connect' is a different form of dropout in a separate paper... See discussion:
https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and
argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class OmnivoreDropPath(nn.Module):
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor):
return drop_path(x, self.drop_prob, self.training)
class OmnivoreLayerNorm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor):
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class OmnivoreIm2Video(nn.Module):
"""Convert Image into a trivial video"""
def forward(self, pixel_values):
if pixel_values.ndim == 4:
return pixel_values.unsqueeze(2)
elif pixel_values.ndim == 5:
return pixel_values
else:
raise ValueError(f"Dimension incorrect {pixel_values.shape}")
class OmnivoreMLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, dropout_rate=0.0, act_layer=nn.GELU):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.linear1 = nn.Linear(in_features, hidden_features)
self.activation = act_layer()
self.linear2 = nn.Linear(hidden_features, out_features)
self.drop_out = nn.Dropout(dropout_rate)
def forward(self, hidden_state):
hidden_state = self.linear1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.drop_out(hidden_state)
hidden_state = self.linear2(hidden_state)
hidden_state = self.drop_out(hidden_state)
return hidden_state
def window_partition(input_feature, window_size):
batch_size, D, height, width, channels = input_feature.shape
input_feature = input_feature.view(
batch_size,
D // window_size[0],
window_size[0],
height // window_size[1],
window_size[1],
width // window_size[2],
window_size[2],
channels,
)
windows = input_feature.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), channels)
return windows
def window_partition_image(input_feature, window_size):
batch_size, height, width, channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size[1], window_size[1], width // window_size[2], window_size[2], channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[1], window_size[2], channels)
return windows
def window_reverse(windows, windows_size, batch_size, D, height, width):
input_feature = windows.view(
batch_size,
D // windows_size[0],
height // windows_size[1],
width // windows_size[2],
windows_size[0],
windows_size[1],
windows_size[2],
-1,
)
input_feature = input_feature.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(batch_size, D, height, width, -1)
return input_feature
def get_window_size(input_size, window_size, shift_size=None):
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(input_size)):
if input_size[i] <= window_size[i]:
use_window_size[i] = input_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class OmnivoreWindowAttention3D(nn.Module):
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=False,
qk_scale=None,
attention_dropout_rate=0.0,
projection_dropout_rate=0.0,
):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1),
num_heads,
)
)
# get pair-wise relative position index for each token inside the window
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.queries_keys_values = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attention_dropout = nn.Dropout(attention_dropout_rate)
self.projection = nn.Linear(dim, dim)
self.projection_dropout = nn.Dropout(projection_dropout_rate)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, hidden_state, attention_mask=None):
batch_size, seq_len, channels = hidden_state.shape
queries_keys_values = (
self.queries_keys_values(hidden_state)
.reshape(batch_size, seq_len, 3, self.num_heads, channels // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
queries, keys, values = queries_keys_values[0], queries_keys_values[1], queries_keys_values[2]
queries = queries * self.scale
attention = queries @ keys.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index[:seq_len, :seq_len].reshape(-1)
].reshape(seq_len, seq_len, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention = attention + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
nW = attention_mask.shape[0]
attention = attention.view(
batch_size // nW, nW, self.num_heads, seq_len, seq_len
) + attention_mask.unsqueeze(1).unsqueeze(0)
attention = attention.view(-1, self.num_heads, seq_len, seq_len)
attention = self.softmax(attention)
else:
attention = self.softmax(attention)
attention = self.attention_dropout(attention)
hidden_state = (attention @ values).transpose(1, 2).reshape(batch_size, seq_len, channels)
hidden_state = self.projection(hidden_state)
hidden_state = self.projection_dropout(hidden_state)
return hidden_state
class OmnivoreSwinTransformer3DLayer(nn.Module):
def __init__(
self,
dim,
num_heads,
window_size=(2, 7, 7),
shift_size=(0, 0, 0),
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
drop_path_rate=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attention = OmnivoreWindowAttention3D(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attention_dropout_rate=attention_dropout_rate,
projection_dropout_rate=dropout_rate,
)
self.drop_path = OmnivoreDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = OmnivoreMLP(
in_features=dim, hidden_features=mlp_hidden_dim, dropout_rate=dropout_rate, act_layer=act_layer
)
def forward_before(self, hidden_state, attention_mask):
batch_size, D, height, width, channels = hidden_state.shape
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
hidden_state = self.norm1(hidden_state)
# pad feature maps to multiples of window size
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
pad_b = (window_size[1] - height % window_size[1]) % window_size[1]
pad_r = (window_size[2] - width % window_size[2]) % window_size[2]
hidden_state = F.pad(hidden_state, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, Dp, Hp, Wp, _ = hidden_state.shape
# cyclic shift
if any(i > 0 for i in shift_size):
shifted_hidden_state = torch.roll(
hidden_state, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)
)
attention_mask = attention_mask
else:
shifted_hidden_state = hidden_state
attention_mask = None
# partition windows
hidden_state_windows = window_partition(shifted_hidden_state, window_size)
# W-MSA/SW-MSA
attention_windows = self.attention(hidden_state_windows, attention_mask=attention_mask)
# merge windows
attention_windows = attention_windows.view(-1, *(window_size + (channels,)))
shifted_hidden_state = window_reverse(attention_windows, window_size, batch_size, Dp, Hp, Wp)
# reverse cyclic shift
if any(i > 0 for i in shift_size):
hidden_state = torch.roll(
shifted_hidden_state, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)
)
else:
hidden_state = shifted_hidden_state
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
hidden_state = hidden_state[:, :D, :height, :width, :].contiguous()
return hidden_state
def forward_after(self, hidden_state):
hidden_state = self.norm2(hidden_state)
hidden_state = self.mlp(hidden_state)
hidden_state = self.drop_path(hidden_state)
return hidden_state
def forward(self, hidden_state, mask_matrix, use_checkpoint=False):
shortcut = hidden_state
if use_checkpoint:
hidden_state = checkpoint.checkpoint(self.forward_before, hidden_state, mask_matrix)
else:
hidden_state = self.forward_before(hidden_state, mask_matrix)
hidden_state = shortcut + self.drop_path(hidden_state)
if use_checkpoint:
hidden_state = hidden_state + checkpoint.checkpoint(self.forward_after, hidden_state)
else:
hidden_state = hidden_state + self.forward_after(hidden_state)
return hidden_state
class OmnivorePatchMerging(nn.Module):
"""
Args:
Patch Merging Layer
dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*): Normalization layer. Default:
`nn.LayerNorm`
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, hidden_state, height=None, width=None):
if height is None:
batch_size, D, height, width, channels = hidden_state.shape
# padding
pad_input = (height % 2 == 1) or (width % 2 == 1)
if pad_input:
hidden_state = F.pad(hidden_state, (0, 0, 0, width % 2, 0, height % 2))
hidden_state0 = hidden_state[:, :, 0::2, 0::2, :]
hidden_state1 = hidden_state[:, :, 1::2, 0::2, :]
hidden_state2 = hidden_state[:, :, 0::2, 1::2, :]
hidden_state3 = hidden_state[:, :, 1::2, 1::2, :]
hidden_state = torch.cat([hidden_state0, hidden_state1, hidden_state2, hidden_state3], -1)
hidden_state = self.norm(hidden_state)
hidden_state = self.reduction(hidden_state)
return hidden_state
@lru_cache()
def compute_mask(D, height, width, window_size, shift_size, device):
img_mask = torch.zeros((1, D, height, width, 1), device=device) # 1 Dp Hp Wp 1
cnt = 0
for d in (
slice(-window_size[0]),
slice(-window_size[0], -shift_size[0]),
slice(-shift_size[0], None),
):
for h in (
slice(-window_size[1]),
slice(-window_size[1], -shift_size[1]),
slice(-shift_size[1], None),
):
for w in (
slice(-window_size[2]),
slice(-window_size[2], -shift_size[2]),
slice(-shift_size[2], None),
):
img_mask[:, d, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size)
mask_windows = mask_windows.squeeze(-1)
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
attention_mask == 0, float(0.0)
)
return attention_mask
class OmnivoreSwinTransformerStage(nn.Module):
def __init__(
self,
dim,
depth,
num_heads,
window_size=(1, 7, 7),
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
dropout_rate=0.0,
attention_dropout_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
):
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.depth = depth
# build layers
self.layers = nn.ModuleList(
[
OmnivoreSwinTransformer3DLayer(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate,
norm_layer=norm_layer,
)
for i in range(depth)
]
)
self.downsample = downsample
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
def forward(self, hidden_state, use_checkpoint=False, height=None, width=None, use_seg=False):
if use_seg:
return self.forward_seg(hidden_state, height, width)
batch_size, channels, D, height, width = hidden_state.shape
window_size, shift_size = get_window_size((D, height, width), self.window_size, self.shift_size)
hidden_state = hidden_state.permute(0, 2, 3, 4, 1)
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
Hp = int(np.ceil(height / window_size[1])) * window_size[1]
Wp = int(np.ceil(width / window_size[2])) * window_size[2]
attention_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, hidden_state.device)
for layer in self.layers:
hidden_state = layer(hidden_state, attention_mask, use_checkpoint=use_checkpoint)
hidden_state = hidden_state.view(batch_size, D, height, width, -1)
if self.downsample is not None:
hidden_state = self.downsample(hidden_state)
hidden_state = hidden_state.permute(0, 4, 1, 2, 3)
return hidden_state
def forward_seg(self, hidden_state, height, width):
Hp = int(np.ceil(height / self.window_size[1])) * self.window_size[1]
Wp = int(np.ceil(width / self.window_size[2])) * self.window_size[2]
img_mask = torch.zeros((1, Hp, Wp, 1), device=hidden_state.device) # 1 Hp Wp 1
h_slices = (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None),
)
w_slices = (
slice(0, -self.window_size[2]),
slice(-self.window_size[2], -self.shift_size[2]),
slice(-self.shift_size[2], None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition_image(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size[1] * self.window_size[2])
attention_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attention_mask = attention_mask.masked_fill(attention_mask != 0, float(-100.0)).masked_fill(
attention_mask == 0, float(0.0)
)
for layer in self.layers:
layer.height, layer.width = height, width
if hidden_state.ndim == 4:
batch_size, D, channels, seq_len = hidden_state.shape
assert seq_len == height * width, "input feature has wrong size"
hidden_state = hidden_state.reshape(batch_size, D, channels, height, width)
hidden_state = hidden_state.permute(0, 1, 3, 4, 2)
assert hidden_state.shape[2] == height
assert hidden_state.shape[3] == width
hidden_state = layer(hidden_state, attention_mask)
if self.downsample is not None:
x_down = self.downsample(hidden_state, height, width)
Wh, Ww = (height + 1) // 2, (width + 1) // 2
return hidden_state, height, width, x_down, Wh, Ww
else:
return hidden_state, height, width, hidden_state, height, width
class OmnivorePatchEmbeddings3D(nn.Module):
"""Video to Patch Embedding"""
def __init__(
self,
patch_size=(2, 4, 4),
input_channels=3,
embed_dim=96,
norm_layer=None,
additional_variable_channels=None,
):
super().__init__()
self.patch_size = patch_size
self.input_channels = input_channels
self.embed_dim = embed_dim
self.additional_variable_channels = additional_variable_channels
self.projection = nn.Conv3d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
if additional_variable_channels:
# we create var_proj separately from proj
# this makes it convenient to ignore var_proj on downstream tasks
# where we only use RGB
self.var_projection = [
nn.Conv3d(x, embed_dim, kernel_size=patch_size, stride=patch_size)
for x in additional_variable_channels
]
self.var_projection = nn.ModuleList(self.var_projection)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def run_variable_channel_forward(self, hidden_state):
sidx = 0
out = None
for idx in range(len(self.additional_variable_channels)):
eidx = sidx + self.additional_variable_channels[idx]
c_out = self.var_projection[idx](hidden_state[:, sidx:eidx, ...])
if idx == 0:
out = c_out
else:
out += c_out
sidx = eidx
return out
def forward(self, hidden_state):
_, _, D, height, width = hidden_state.size()
if width % self.patch_size[2] != 0:
hidden_state = F.pad(hidden_state, (0, self.patch_size[2] - width % self.patch_size[2]))
if height % self.patch_size[1] != 0:
hidden_state = F.pad(hidden_state, (0, 0, 0, self.patch_size[1] - height % self.patch_size[1]))
if D % self.patch_size[0] != 0:
hidden_state = F.pad(hidden_state, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
if self.additional_variable_channels:
hidden_state_rgb = hidden_state[:, :3, ...]
hidden_state_rem = hidden_state[:, 3:, ...]
hidden_state_rgb = self.projection(hidden_state_rgb)
if hidden_state.shape[1] > 3:
hidden_state_rem = self.run_variable_channel_forward(hidden_state_rem)
hidden_state = hidden_state_rgb + hidden_state_rem
else:
hidden_state = hidden_state_rgb
else:
hidden_state = self.projection(hidden_state) # B C D Wh Ww
if self.norm is not None:
D, Wh, Ww = hidden_state.size(2), hidden_state.size(3), hidden_state.size(4)
hidden_state = hidden_state.flatten(2).transpose(1, 2)
hidden_state = self.norm(hidden_state)
hidden_state = hidden_state.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
return hidden_state
class OmnivoreSwinTransformer3DModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.im2vid = OmnivoreIm2Video()
self.num_stages = len(self.config.depths)
self.patch_size = self.config.patch_size
self.input_channels = self.config.input_channels
self.embed_dim = self.config.embed_dim
self.depths = self.config.depths
self.num_heads = self.config.num_heads
self.window_size = self.config.window_size
self.mlp_ratio = self.config.mlp_ratio
self.qkv_bias = self.config.qkv_bias
self.qk_scale = self.config.qk_scale
self.dropout_rate = self.config.dropout_rate
self.attention_dropout_rate = self.config.attention_dropout_rate
self.drop_path_rate = self.config.drop_path_rate
self.norm_layer = nn.LayerNorm
self.patch_norm = self.config.patch_norm
self.frozen_stages = self.config.frozen_stages
self.depth_patch_embed_separate_params = True
self.depth_mode = self.config.depth_mode
depth_chans = None
assert self.input_channels == 3, "Only 3 channels supported"
# split image into non-overlapping patches
self.patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=self.input_channels,
embed_dim=self.embed_dim,
norm_layer=self.norm_layer if self.patch_norm else None,
)
if self.depth_mode is not None:
msg = f"Using depth mode {self.depth_mode}"
logger.info(msg)
assert self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens", "rgbd"]
if self.depth_mode in ["separate_d_tokens", "summed_rgb_d_tokens"]:
depth_chans = 1
assert self.depth_patch_embed_separate_params, "separate tokenization needs separate parameters"
if self.depth_mode == "separate_d_tokens":
raise NotImplementedError()
else:
assert self.depth_mode == "rgbd"
depth_chans = 4
self.depth_patch_embed_separate_params = self.depth_patch_embed_separate_params
if self.depth_patch_embed_separate_params:
self.depth_patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=depth_chans,
embed_dim=self.embed_dim,
norm_layer=self.norm_layer if self.patch_norm else None,
)
else:
del self.patch_embed
assert depth_chans == 4
logger.info("Certain channels of patch projection may not be used in forward pass")
logger.info("Make sure config.DISTRIBUTED.FIND_UNUSED_PARAMETERS is set to True")
self.patch_embed = OmnivorePatchEmbeddings3D(
patch_size=self.patch_size,
input_channels=3,
embed_dim=self.embed_dim,
additional_variable_channels=[1],
norm_layer=self.norm_layer if self.patch_norm else None,
)
self.pos_drop = nn.Dropout(p=self.dropout_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
] # stochastic depth decay rule
# build stages
self.stages = nn.ModuleList()
for stage in range(self.num_stages):
stage_module = OmnivoreSwinTransformerStage(
dim=int(self.embed_dim * 2**stage),
depth=self.depths[stage],
num_heads=self.num_heads[stage],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
qk_scale=self.qk_scale,
dropout_rate=self.dropout_rate,
attention_dropout_rate=self.attention_dropout_rate,
drop_path_rate=dpr[sum(self.depths[:stage]) : sum(self.depths[: stage + 1])],
norm_layer=self.norm_layer,
downsample=OmnivorePatchMerging if stage < self.num_stages - 1 else None,
)
self.stages.append(stage_module)
self.num_features = int(self.embed_dim * 2 ** (self.num_stages - 1))
self.norm = self.norm_layer(self.num_features)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1:
self.pos_drop.eval()
for i in range(0, self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def _apply_norm(self, x):
x = x.permute(0, 2, 3, 4, 1)
x = self.norm(x)
x = x.permute(0, 4, 1, 2, 3)
return x
def forward_intermediate_features(self, stage_outputs, out_feat_keys):
"""
Inputs
- stage_outputs: list of features without self.norm() applied to them
- out_feat_keys: list of feature names (str)
specified as "stage<int>" for feature with norm or "interim<int>" for feature without norm
"""
out_features = []
for key in out_feat_keys:
if key.startswith("stage"):
rep = "stage"
elif key.startswith("interim"):
rep = "interim"
else:
raise ValueError(f"Invalid key {key}")
idx = int(key.replace(rep, ""))
feat = stage_outputs[idx]
if rep == "stage":
feat = self._apply_norm(feat)
out_features.append(feat)
return out_features
def get_patch_embedding(self, hidden_state):
assert hidden_state.ndim == 5
has_depth = hidden_state.shape[1] == 4
if has_depth:
if self.depth_mode in ["summed_rgb_d_tokens"]:
hidden_state_rgb = hidden_state[:, :3, ...]
hidden_state_d = hidden_state[:, 3:, ...]
hidden_state_d = self.depth_patch_embed(hidden_state_d)
hidden_state_rgb = self.patch_embed(hidden_state_rgb)
# sum the two sets of tokens
hidden_state = hidden_state_rgb + hidden_state_d
elif self.depth_mode == "rgbd":
if self.depth_patch_embed_separate_params:
hidden_state = self.depth_patch_embed(hidden_state)
else:
hidden_state = self.patch_embed(hidden_state)
else:
logger.info("Depth mode %s not supported" % self.depth_mode)
raise NotImplementedError()
else:
hidden_state = self.patch_embed(hidden_state)
return hidden_state
def forward(
self, hidden_state, out_feat_keys=None, use_checkpoint=False, output_hidden_states=False, return_dict=True
):
all_hidden_states = () if output_hidden_states else None
hidden_state = self.im2vid(hidden_state)
hidden_state = self.get_patch_embedding(hidden_state)
hidden_state = self.pos_drop(hidden_state)
stage_outputs = []
for stage in self.stages:
hidden_state = stage(hidden_state.contiguous(), use_checkpoint=use_checkpoint)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
stage_outputs.append(hidden_state)
if out_feat_keys is not None and len(out_feat_keys) > 0:
final_hidden_state = self.forward_intermediate_features(stage_outputs, out_feat_keys)
else:
hidden_state = self._apply_norm(hidden_state)
# Mean over the spatiotemporal dimensions
hidden_state = torch.mean(hidden_state, [-3, -2, -1])
final_hidden_state = hidden_state
if not return_dict:
return tuple(v for v in [final_hidden_state, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=final_hidden_state, hidden_states=all_hidden_states)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(OmnivoreSwinTransformer3DModel, self).train(mode)
self._freeze_stages()
class OmnivoreImageClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=1000, bias=True):
super().__init__()
self.image_head = nn.Linear(in_features, out_features, bias)
def forward(self, hidden_state):
logits = self.image_head(hidden_state)
return logits
class OmnivoreVideoClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=400, bias=True):
super().__init__()
self.video_head = nn.Linear(in_features, out_features, bias)
self.dropout = nn.Dropout(p=0.5)
def forward(self, hidden_state):
logits = self.video_head(hidden_state)
logits = self.dropout(logits)
return logits
class OmnivoreRGBDClassificationHead(nn.Module):
def __init__(self, in_features=1024, out_features=19, bias=True):
super().__init__()
self.rgbd_head = nn.Linear(in_features, out_features, bias)
def forward(self, hidden_state):
logits = self.rgbd_head(hidden_state)
return logits
class OmnivorePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OmnivoreConfig
base_model_prefix = "omnivore"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, OmnivoreModel):
module.gradient_checkpointing = value
OMNIVORE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`OmnivoreConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OMNIVORE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoFeatureExtractor`]. See
[`AutoFeatureExtractor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Omnivore model outputting raw features without any specific head on top.",
OMNIVORE_START_DOCSTRING,
)
class OmnivoreModel(OmnivorePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = OmnivoreSwinTransformer3DModel(config)
self.post_init()
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.model(pixel_values)
last_hidden_state = outputs[0]
# global average pooling, (N, C, D, H, W) -> (N, C)
pooled_output = last_hidden_state.mean([-1])
if not return_dict:
return (last_hidden_state, pooled_output) + outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
Omnivore Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
OMNIVORE_START_DOCSTRING,
)
class OmnivoreForImageClassification(OmnivorePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_image_labels = config.num_image_labels or config.num_labels
self.num_video_labels = config.num_video_labels or config.num_labels
self.num_rgbd_labels = config.num_rgbd_labels or config.num_labels
self.omnivore = OmnivoreModel(config)
self.image_classifier = OmnivoreImageClassificationHead(config.head_dim_in, self.num_image_labels)
self.rgbd_classifier = OmnivoreRGBDClassificationHead(config.head_dim_in, self.num_rgbd_labels)
self.video_classifier = OmnivoreVideoClassificationHead(config.head_dim_in, self.num_video_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OMNIVORE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
pixel_input_type: str = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
pixel_input_type (`str`):
Which classification head to use for the classification of given pixel_values
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.omnivore(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
sequence_output = outputs[0]
logits = None
if pixel_input_type == "image":
logits = self.image_classifier(sequence_output)
if pixel_input_type == "video":
logits = self.video_classifier(sequence_output)
if pixel_input_type == "rgbd":
logits = self.rgbd_classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)