arad1367 commited on
Commit
333f10d
·
verified ·
1 Parent(s): e95e4f0

Uploading crypto fundamental news classifier model

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: crypto_fundamental_news_text_classifier-distilbert-base-uncased
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # crypto_fundamental_news_text_classifier-distilbert-base-uncased
18
+
19
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3716
22
+ - Accuracy: 0.9194
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 20
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 1.0913 | 1.0 | 8 | 1.1070 | 0.2097 |
54
+ | 1.0507 | 2.0 | 16 | 1.0611 | 0.4032 |
55
+ | 0.9942 | 3.0 | 24 | 0.9997 | 0.5161 |
56
+ | 0.8923 | 4.0 | 32 | 0.9018 | 0.5968 |
57
+ | 0.7789 | 5.0 | 40 | 0.8149 | 0.6774 |
58
+ | 0.675 | 6.0 | 48 | 0.7557 | 0.7903 |
59
+ | 0.6047 | 7.0 | 56 | 0.6935 | 0.7903 |
60
+ | 0.5335 | 8.0 | 64 | 0.6468 | 0.8548 |
61
+ | 0.4758 | 9.0 | 72 | 0.6036 | 0.8871 |
62
+ | 0.43 | 10.0 | 80 | 0.5686 | 0.8871 |
63
+ | 0.3939 | 11.0 | 88 | 0.5312 | 0.9032 |
64
+ | 0.349 | 12.0 | 96 | 0.4888 | 0.9194 |
65
+ | 0.3127 | 13.0 | 104 | 0.4539 | 0.9194 |
66
+ | 0.2806 | 14.0 | 112 | 0.4281 | 0.9194 |
67
+ | 0.2624 | 15.0 | 120 | 0.4062 | 0.9194 |
68
+ | 0.2362 | 16.0 | 128 | 0.3953 | 0.9194 |
69
+ | 0.2231 | 17.0 | 136 | 0.3839 | 0.9194 |
70
+ | 0.2161 | 18.0 | 144 | 0.3799 | 0.9194 |
71
+ | 0.2023 | 19.0 | 152 | 0.3753 | 0.9194 |
72
+ | 0.1982 | 20.0 | 160 | 0.3716 | 0.9194 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.47.0.dev0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.0.2
80
+ - Tokenizers 0.20.0
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "negative",
13
+ "1": "neutral",
14
+ "2": "positive"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "label2id": {
18
+ "negative": 0,
19
+ "neutral": 1,
20
+ "positive": 2
21
+ },
22
+ "max_position_embeddings": 512,
23
+ "model_type": "distilbert",
24
+ "n_heads": 12,
25
+ "n_layers": 6,
26
+ "pad_token_id": 0,
27
+ "problem_type": "single_label_classification",
28
+ "qa_dropout": 0.1,
29
+ "seq_classif_dropout": 0.2,
30
+ "sinusoidal_pos_embds": false,
31
+ "tie_weights_": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.47.0.dev0",
34
+ "vocab_size": 30522
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3c09b9ef70bd979a2ee8196582bc2e80ef339509d7e3a42dda41abb5a99873b
3
+ size 267835644
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2e8a3aef1af8efbac0cf5c5925f8d1e1c8abb955a448b2d4ce6cee02114cd15
3
+ size 5432
vocab.txt ADDED
The diff for this file is too large to render. See raw diff