--- language: - en library_name: diffusers inference: true license: other license_name: stabilityai-ai-community license_link: LICENSE.md tags: - text-to-image - stable-diffusion - diffusers base_model: - stabilityai/stable-diffusion-3.5-large - stabilityai/stable-diffusion-3.5-large-turbo base_model_relation: merge --- # Stable Diffusion 3.5 Merged This repository contains the merged version of **Stable Diffusion 3.5**, combining the best features from both the [**Large**](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) and [**Turbo**](https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo) variants. | Large (40 steps) | Turbo (4 steps) | Merged (6 steps) 🎉 | | :--: | :--: | :--: | | ![](./assets/large.png) | ![](./assets/turbo.png) | ![](./assets/sd-3.5-merged.png) | ## Inference Run the following code to generate images using the merged model: ```python from diffusers import StableDiffusion3Pipeline import torch pipeline = StableDiffusion3Pipeline.from_pretrained( "ariG23498/sd-3.5-merged", torch_dtype=torch.bfloat16 ).to("cuda") prompt = "a tiny astronaut hatching from an egg on the moon" image = pipeline( prompt=prompt, guidance_scale=1.0, num_inference_steps=6, # Run faster ⚡️ generator=torch.manual_seed(0), ).images[0] image.save("sd-3.5-merged.png") ``` > **Note**: Turbo variant runs faster with fewer steps, while Large variant requires more steps (around 50) but provides better detail. With the merged model you would need to play with `num_inference_steps` and `guidance_scale` to get the perfect balance of speed and quality. Below I show a grid of scale and step changes and its corresponding generations. ![](./assets/grid.png) ## Merging Models This repository merges the **Stable Diffusion 3.5 Large** and **Stable Diffusion 3.5 Turbo** models into a single, powerful model. The Large version uses classifier-free guidance (CFG) and requires more steps, while the Turbo version is distilled for faster generation without CFG. The merged model retains the detail of the Large version and the speed of the Turbo version. ### Code to Merge Models To access the Stable Diffusion 3.5 models, one needs to fill the forms in the corresponding repositories, and then `huggingface_cli login` to let your system know who you are and whether you have access to the models! ```python from diffusers import SD3Transformer2DModel from huggingface_hub import snapshot_download from accelerate import init_empty_weights from diffusers.models.model_loading_utils import load_model_dict_into_meta import safetensors.torch from huggingface_hub import upload_folder import glob import torch large_model_id = "stabilityai/stable-diffusion-3.5-large" turbo_model_id = "stabilityai/stable-diffusion-3.5-large-turbo" with init_empty_weights(): config = SD3Transformer2DModel.load_config(large_model_id, subfolder="transformer") model = SD3Transformer2DModel.from_config(config) large_ckpt = snapshot_download(repo_id=large_model_id, allow_patterns="transformer/*") turbo_ckpt = snapshot_download(repo_id=turbo_model_id, allow_patterns="transformer/*") large_shards = sorted(glob.glob(f"{large_ckpt}/transformer/*.safetensors")) turbo_shards = sorted(glob.glob(f"{turbo_ckpt}/transformer/*.safetensors")) merged_state_dict = {} guidance_state_dict = {} for i in range(len((large_shards))): state_dict_large_temp = safetensors.torch.load_file(large_shards[i]) state_dict_turbo_temp = safetensors.torch.load_file(turbo_shards[i]) keys = list(state_dict_large_temp.keys()) for k in keys: if "guidance" not in k: merged_state_dict[k] = (state_dict_large_temp.pop(k) + state_dict_turbo_temp.pop(k)) / 2 else: guidance_state_dict[k] = state_dict_large_temp.pop(k) if len(state_dict_large_temp) > 0: raise ValueError(f"There should not be any residue but got: {list(state_dict_large_temp.keys())}.") if len(state_dict_turbo_temp) > 0: raise ValueError(f"There should not be any residue but got: {list(state_dict_turbo_temp.keys())}.") merged_state_dict.update(guidance_state_dict) load_model_dict_into_meta(model, merged_state_dict) model.to(torch.bfloat16).save_pretrained("transformer") upload_folder( repo_id="ariG23498/sd-3.5-merged", folder_path="transformer", path_in_repo="transformer", ) ``` This script downloads the checkpoints, merges them, and saves the merged model locally. You can then upload the merged model to Hugging Face Hub using `upload_folder`. ## References: [FLUX.1 merged](https://huggingface.co/sayakpaul/FLUX.1-merged) from Sayak Paul!