Upload PPO LunarLander-v2 trained agent-Basab
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 235.23 +/- 46.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e9cdc67ab90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9cdc67ac20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e9cdc67acb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9cdc67ad40>", "_build": "<function ActorCriticPolicy._build at 0x7e9cdc67add0>", "forward": "<function ActorCriticPolicy.forward at 0x7e9cdc67ae60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9cdc67aef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9cdc67af80>", "_predict": "<function ActorCriticPolicy._predict at 0x7e9cdc67b010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9cdc67b0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9cdc67b130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9cdc67b1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e9cdc615100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707123646442623209, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA0iT6rLG8/pBPCPkQ1IL8AkIQ+BSMVPQAAAAAAAAAAgNTivZa2lz+VjNK+yt0kv90PAL5/WBq+AAAAAAAAAAAA+uw8LdeEPxCTXD0DxBO/j0JVPVhb6TsAAAAAAAAAAJo0Uz650Gk/hS2gPtoaH7+IfDs+coW+PAAAAAAAAAAAzSAhvExJrj9oTd299lmzvmKTiTtOXyI7AAAAAAAAAAA6ims+i2m1PdVPxb13HOK9bK/yPF7jZ70AAAAAAAAAAHO9iL3De6c/WU0Qv2XdC79WR/i8La9evgAAAAAAAAAAxq5Cvt/t/jwbODc8nYbhujcni779PwY8AACAPwAAgD9AoSy+qQVJvCnKoLpEAu+4QqyuPV+zwzkAAIA/AACAP8DtO75oe4K8nlt1uw/7E7rCuOY9ueqvOgAAgD8AAIA/2iNDvrbCcbwmnBa7Zws1uXPz2j17VD86AACAPwAAgD9As8+9necdP6Fnnb0GeSm/5vRLvYdqGj0AAAAAAAAAAGZULzyDmGk9gW2lOwTlAb4GipU8Ml6TvAAAAAAAAAAAlfiIvm03Rj+7HlG+U64Fv4SJQb6H8hE8AAAAAAAAAACgz5++v0uQvfrX+TvjJNC8TwTSPmxIij0AAIA/AACAP+YcDj17As89EfCwvdEuu71Wcbq8gN7xvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBNOvUz9COMAWyUS7uMAXSUR0Ca0MN+b3GodX2UKGgGR0BrJtfmcOLBaAdL8GgIR0Ca0PCYCyQgdX2UKGgGR0BxcaGWUr08aAdLsmgIR0Ca0YPzFuNxdX2UKGgGR0AEgAGSpzcRaAdLpmgIR0Ca0hCOWBz4dX2UKGgGR0BiIvwG4ZuRaAdN6ANoCEdAmtMOfI0ZWXV9lChoBkdAcLrcvM8oyGgHS6toCEdAmtP8Rg7YCnV9lChoBkdAb4e3nZCfH2gHS8VoCEdAmtP8sYl6aHV9lChoBkdAY+FPppvgnGgHTegDaAhHQJrT/FwT/Q11fZQoaAZHQHA61y7wrlNoB0vbaAhHQJrXUXj2i+N1fZQoaAZHQG/xgwPAfuFoB0vdaAhHQJrYVKIznA91fZQoaAZHQG98XA2ycCpoB0vFaAhHQJrZTbeuV5d1fZQoaAZHQHCV5Du0CzVoB0vtaAhHQJrZf6P8yet1fZQoaAZHQHEVBzBAOaxoB0v4aAhHQJrZuzMRpUR1fZQoaAZHQG/6wjdHlOpoB0uiaAhHQJraE0m+j/N1fZQoaAZHQGyKzwlSjxloB0vEaAhHQJraXisGPgh1fZQoaAZHQHCQ/J7sv7FoB0vMaAhHQJrbo+Ofdyl1fZQoaAZHQHCiFJL/S6VoB03SAWgIR0Ca3agJTl1bdX2UKGgGR0BhmVYSxqwhaAdN6ANoCEdAmt+t7a7EpHV9lChoBkdAcf9TvRZ2ZGgHTRwBaAhHQJripXXAdn11fZQoaAZHQG0488cMmWtoB0vsaAhHQJri8f7rLQp1fZQoaAZHQHCxYa1kUbloB0v9aAhHQJrj5UyYXwd1fZQoaAZHQC4js6aLGaRoB0udaAhHQJrkJXMhX8x1fZQoaAZHQG3uQLNOdoZoB02zAmgIR0Ca5RODJ2dNdX2UKGgGR0BuzOmLtNSJaAdNEQFoCEdAmuVlFlTWG3V9lChoBkdAcQuJ2MbWE2gHS/VoCEdAmuWeK0lZ5nV9lChoBkdAbv0kl/pdKWgHS79oCEdAmudTYdyT6nV9lChoBkdAY+SZ62OQyWgHTegDaAhHQJrnjVBlcyF1fZQoaAZHQHF8/J3gUDdoB0u5aAhHQJruPppvgm91fZQoaAZHQHAhIcvM8oxoB0u9aAhHQJru+RmseXB1fZQoaAZHQHDzaLGaQV9oB0vJaAhHQJrwFev6j351fZQoaAZHQHBiuxOclPdoB00LAWgIR0Ca8RzMA3kxdX2UKGgGR0BqDQJ3PiT/aAdNEwJoCEdAmvICHqNZNnV9lChoBkdAZAJIjGDL82gHTegDaAhHQJryD9S/CZZ1fZQoaAZHQHEbPV7Qb+9oB0vUaAhHQJryixcE/0N1fZQoaAZHQHD1PYFqzqtoB0vOaAhHQJryigAZKnN1fZQoaAZHQHAcYYNy5qdoB014AWgIR0Ca9ISk0rLAdX2UKGgGR0Be6k/OdGy5aAdN6ANoCEdAmvZS2hIvrXV9lChoBkdAb8sIVM23rmgHS+VoCEdAmvglB2OhkHV9lChoBkdAburRGc4HX2gHS95oCEdAmvhORoysS3V9lChoBkdAcdvEZR8+imgHS+doCEdAmvpArc0tRXV9lChoBkdAbP41VHWjGmgHS89oCEdAmvqmRNh3JXV9lChoBkdAcX1xdIGyHGgHS+BoCEdAmvrKXa8HwHV9lChoBkdAcAzMZxaPjmgHS+poCEdAmvsfwAlv63V9lChoBkdAYRIgK4QSSWgHTegDaAhHQJr7KfPHDJl1fZQoaAZHQHAOq0+kgwJoB00EAWgIR0Ca/II2OyVwdX2UKGgGR0BhK/NgSeyzaAdN6ANoCEdAmv2hoIv8InV9lChoBkdAb2UAqd6LO2gHS9NoCEdAmv4tIf8uSXV9lChoBkdAcGg1EE1VHWgHS+loCEdAmwCKyv9tM3V9lChoBkdAblrgUlAu7GgHS8JoCEdAmwEZvP1L8XV9lChoBkdAcGJyXUpd8mgHTbICaAhHQJsBQcaOxSp1fZQoaAZHQG5JrhaTwDxoB0u+aAhHQJsBU1l5GBp1fZQoaAZHQF1g8NQTEitoB03oA2gIR0CbAc6vJRwZdX2UKGgGR0BxX3NHH3lCaAdLzmgIR0CbAk/2TPjXdX2UKGgGR0BiAHm/336AaAdN6ANoCEdAmwKXrt3OfXV9lChoBkdAcS3UDMeOn2gHS9doCEdAmwKgXAM2FXV9lChoBkdAcaEKDCgsb2gHTe4BaAhHQJsCqRQrMC91fZQoaAZHQHEhfvBrN4ZoB0u5aAhHQJsC4NI9TxZ1fZQoaAZHQG4rie/YapBoB0vzaAhHQJsDHisGPgh1fZQoaAZHQGlB3trsSkFoB02hAWgIR0CbA3ustCiRdX2UKGgGR0BxOyH1vl2eaAdLu2gIR0CbA734Kx9odX2UKGgGR0BvG4raufVaaAdL0GgIR0CbBKGMGX5WdX2UKGgGR0BuMyyOaOPvaAdLxGgIR0CbBpPfsNUgdX2UKGgGR0BwsqjYZl4DaAdLwmgIR0CbBrf2saKldX2UKGgGR0BxEaJQ+EAYaAdLtmgIR0CbBsVnmJWOdX2UKGgGR0Bs2v18LKFJaAdL0mgIR0CbByCI1tO3dX2UKGgGR0Bwo44lyBClaAdL9GgIR0CbB4PuXu3MdX2UKGgGR0ByITs/pt78aAdLvGgIR0CbB5sSCe3AdX2UKGgGR0BvAAyO7xusaAdLtWgIR0CbB6rqMWGidX2UKGgGR0BwTpgG8mKJaAdLxWgIR0CbB88m8dxRdX2UKGgGR0BujjvG6wt8aAdL0WgIR0CbCClLeyiVdX2UKGgGR0Bwi3vXsgMdaAdLw2gIR0CbCD6Y3Ns4dX2UKGgGR0BjE/yXlbNbaAdN6ANoCEdAmwjVUIcBEXV9lChoBkdAb35CAMDwIGgHS8toCEdAmwjm6GxlhHV9lChoBkdAbpSM2m51/2gHS8FoCEdAmwjszImw7nV9lChoBkdAcR/Qmu1WsGgHS71oCEdAmwml2FFlTXV9lChoBkdAcT+4ptrKvGgHS8BoCEdAmwug84gieXV9lChoBkdAbmZhpg1FY2gHS8hoCEdAmwwEwN9YwXV9lChoBkdAb7Oc9W6shmgHS8BoCEdAmwzXxvvSdHV9lChoBkdAcC1VY6nzhGgHS8JoCEdAmwzXVsk6cXV9lChoBkdAcYVBkqc3EWgHS+xoCEdAmw0uejEehnV9lChoBkdAb/luTA31jGgHS8poCEdAmw1V9Wp6yHV9lChoBkdAcY5yN4qwyWgHS/VoCEdAmw5PgR9PUXV9lChoBkdAcc+7fYSQHWgHS85oCEdAmw66/qPfbnV9lChoBkdAcCDW1c+qzmgHTRsBaAhHQJsPE+EAYHh1fZQoaAZHQHHI8EidJ8RoB0vbaAhHQJsPL6KtPpJ1fZQoaAZHQG/evNVzZHxoB0v9aAhHQJsPejfvWpZ1fZQoaAZHQHGptvbXYlJoB0v1aAhHQJsP0ScslLR1fZQoaAZHQEJsmxdIGyJoB0udaAhHQJsQyYu01Il1fZQoaAZHQG8NjyWiUPhoB0vCaAhHQJsRjUtqYZ51fZQoaAZHQHCH9M0xdptoB00xAWgIR0CbErol2NeddX2UKGgGR0BAwPacqe9SaAdLyGgIR0CbEv3u/k/9dX2UKGgGR0BwFWT3Zf2LaAdL1GgIR0CbE10A93bFdX2UKGgGR0BuB9BSk0rLaAdLw2gIR0CbFSolD4QCdX2UKGgGR0Bw5mUcGTs6aAdNBAFoCEdAmxVnrleWwHV9lChoBkdAcJjL/S6UaGgHS9ZoCEdAmxWsQZn+Q3V9lChoBkdAcZkFs54nnmgHS/NoCEdAmxXcJIDoyXV9lChoBkdAb0vIMjNY82gHS8poCEdAmxYbWd3B6HV9lChoBkdAcDE+tbLU1GgHS7poCEdAmxayD7Ikq3V9lChoBkdAYaYZaV2RrGgHTegDaAhHQJsXFyR0U491fZQoaAZHQHGTnzcynDRoB0v3aAhHQJsXJ1bJOnF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf72272c76dee2a6ba716b0143d98439b0d39a1426d52c35de0a512b48bcd065
|
3 |
+
size 147973
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e9cdc67ab90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9cdc67ac20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e9cdc67acb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9cdc67ad40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e9cdc67add0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e9cdc67ae60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9cdc67aef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e9cdc67af80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e9cdc67b010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e9cdc67b0a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9cdc67b130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9cdc67b1c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e9cdc615100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1707123646442623209,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGA0iT6rLG8/pBPCPkQ1IL8AkIQ+BSMVPQAAAAAAAAAAgNTivZa2lz+VjNK+yt0kv90PAL5/WBq+AAAAAAAAAAAA+uw8LdeEPxCTXD0DxBO/j0JVPVhb6TsAAAAAAAAAAJo0Uz650Gk/hS2gPtoaH7+IfDs+coW+PAAAAAAAAAAAzSAhvExJrj9oTd299lmzvmKTiTtOXyI7AAAAAAAAAAA6ims+i2m1PdVPxb13HOK9bK/yPF7jZ70AAAAAAAAAAHO9iL3De6c/WU0Qv2XdC79WR/i8La9evgAAAAAAAAAAxq5Cvt/t/jwbODc8nYbhujcni779PwY8AACAPwAAgD9AoSy+qQVJvCnKoLpEAu+4QqyuPV+zwzkAAIA/AACAP8DtO75oe4K8nlt1uw/7E7rCuOY9ueqvOgAAgD8AAIA/2iNDvrbCcbwmnBa7Zws1uXPz2j17VD86AACAPwAAgD9As8+9necdP6Fnnb0GeSm/5vRLvYdqGj0AAAAAAAAAAGZULzyDmGk9gW2lOwTlAb4GipU8Ml6TvAAAAAAAAAAAlfiIvm03Rj+7HlG+U64Fv4SJQb6H8hE8AAAAAAAAAACgz5++v0uQvfrX+TvjJNC8TwTSPmxIij0AAIA/AACAP+YcDj17As89EfCwvdEuu71Wcbq8gN7xvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBNOvUz9COMAWyUS7uMAXSUR0Ca0MN+b3GodX2UKGgGR0BrJtfmcOLBaAdL8GgIR0Ca0PCYCyQgdX2UKGgGR0BxcaGWUr08aAdLsmgIR0Ca0YPzFuNxdX2UKGgGR0AEgAGSpzcRaAdLpmgIR0Ca0hCOWBz4dX2UKGgGR0BiIvwG4ZuRaAdN6ANoCEdAmtMOfI0ZWXV9lChoBkdAcLrcvM8oyGgHS6toCEdAmtP8Rg7YCnV9lChoBkdAb4e3nZCfH2gHS8VoCEdAmtP8sYl6aHV9lChoBkdAY+FPppvgnGgHTegDaAhHQJrT/FwT/Q11fZQoaAZHQHA61y7wrlNoB0vbaAhHQJrXUXj2i+N1fZQoaAZHQG/xgwPAfuFoB0vdaAhHQJrYVKIznA91fZQoaAZHQG98XA2ycCpoB0vFaAhHQJrZTbeuV5d1fZQoaAZHQHCV5Du0CzVoB0vtaAhHQJrZf6P8yet1fZQoaAZHQHEVBzBAOaxoB0v4aAhHQJrZuzMRpUR1fZQoaAZHQG/6wjdHlOpoB0uiaAhHQJraE0m+j/N1fZQoaAZHQGyKzwlSjxloB0vEaAhHQJraXisGPgh1fZQoaAZHQHCQ/J7sv7FoB0vMaAhHQJrbo+Ofdyl1fZQoaAZHQHCiFJL/S6VoB03SAWgIR0Ca3agJTl1bdX2UKGgGR0BhmVYSxqwhaAdN6ANoCEdAmt+t7a7EpHV9lChoBkdAcf9TvRZ2ZGgHTRwBaAhHQJripXXAdn11fZQoaAZHQG0488cMmWtoB0vsaAhHQJri8f7rLQp1fZQoaAZHQHCxYa1kUbloB0v9aAhHQJrj5UyYXwd1fZQoaAZHQC4js6aLGaRoB0udaAhHQJrkJXMhX8x1fZQoaAZHQG3uQLNOdoZoB02zAmgIR0Ca5RODJ2dNdX2UKGgGR0BuzOmLtNSJaAdNEQFoCEdAmuVlFlTWG3V9lChoBkdAcQuJ2MbWE2gHS/VoCEdAmuWeK0lZ5nV9lChoBkdAbv0kl/pdKWgHS79oCEdAmudTYdyT6nV9lChoBkdAY+SZ62OQyWgHTegDaAhHQJrnjVBlcyF1fZQoaAZHQHF8/J3gUDdoB0u5aAhHQJruPppvgm91fZQoaAZHQHAhIcvM8oxoB0u9aAhHQJru+RmseXB1fZQoaAZHQHDzaLGaQV9oB0vJaAhHQJrwFev6j351fZQoaAZHQHBiuxOclPdoB00LAWgIR0Ca8RzMA3kxdX2UKGgGR0BqDQJ3PiT/aAdNEwJoCEdAmvICHqNZNnV9lChoBkdAZAJIjGDL82gHTegDaAhHQJryD9S/CZZ1fZQoaAZHQHEbPV7Qb+9oB0vUaAhHQJryixcE/0N1fZQoaAZHQHD1PYFqzqtoB0vOaAhHQJryigAZKnN1fZQoaAZHQHAcYYNy5qdoB014AWgIR0Ca9ISk0rLAdX2UKGgGR0Be6k/OdGy5aAdN6ANoCEdAmvZS2hIvrXV9lChoBkdAb8sIVM23rmgHS+VoCEdAmvglB2OhkHV9lChoBkdAburRGc4HX2gHS95oCEdAmvhORoysS3V9lChoBkdAcdvEZR8+imgHS+doCEdAmvpArc0tRXV9lChoBkdAbP41VHWjGmgHS89oCEdAmvqmRNh3JXV9lChoBkdAcX1xdIGyHGgHS+BoCEdAmvrKXa8HwHV9lChoBkdAcAzMZxaPjmgHS+poCEdAmvsfwAlv63V9lChoBkdAYRIgK4QSSWgHTegDaAhHQJr7KfPHDJl1fZQoaAZHQHAOq0+kgwJoB00EAWgIR0Ca/II2OyVwdX2UKGgGR0BhK/NgSeyzaAdN6ANoCEdAmv2hoIv8InV9lChoBkdAb2UAqd6LO2gHS9NoCEdAmv4tIf8uSXV9lChoBkdAcGg1EE1VHWgHS+loCEdAmwCKyv9tM3V9lChoBkdAblrgUlAu7GgHS8JoCEdAmwEZvP1L8XV9lChoBkdAcGJyXUpd8mgHTbICaAhHQJsBQcaOxSp1fZQoaAZHQG5JrhaTwDxoB0u+aAhHQJsBU1l5GBp1fZQoaAZHQF1g8NQTEitoB03oA2gIR0CbAc6vJRwZdX2UKGgGR0BxX3NHH3lCaAdLzmgIR0CbAk/2TPjXdX2UKGgGR0BiAHm/336AaAdN6ANoCEdAmwKXrt3OfXV9lChoBkdAcS3UDMeOn2gHS9doCEdAmwKgXAM2FXV9lChoBkdAcaEKDCgsb2gHTe4BaAhHQJsCqRQrMC91fZQoaAZHQHEhfvBrN4ZoB0u5aAhHQJsC4NI9TxZ1fZQoaAZHQG4rie/YapBoB0vzaAhHQJsDHisGPgh1fZQoaAZHQGlB3trsSkFoB02hAWgIR0CbA3ustCiRdX2UKGgGR0BxOyH1vl2eaAdLu2gIR0CbA734Kx9odX2UKGgGR0BvG4raufVaaAdL0GgIR0CbBKGMGX5WdX2UKGgGR0BuMyyOaOPvaAdLxGgIR0CbBpPfsNUgdX2UKGgGR0BwsqjYZl4DaAdLwmgIR0CbBrf2saKldX2UKGgGR0BxEaJQ+EAYaAdLtmgIR0CbBsVnmJWOdX2UKGgGR0Bs2v18LKFJaAdL0mgIR0CbByCI1tO3dX2UKGgGR0Bwo44lyBClaAdL9GgIR0CbB4PuXu3MdX2UKGgGR0ByITs/pt78aAdLvGgIR0CbB5sSCe3AdX2UKGgGR0BvAAyO7xusaAdLtWgIR0CbB6rqMWGidX2UKGgGR0BwTpgG8mKJaAdLxWgIR0CbB88m8dxRdX2UKGgGR0BujjvG6wt8aAdL0WgIR0CbCClLeyiVdX2UKGgGR0Bwi3vXsgMdaAdLw2gIR0CbCD6Y3Ns4dX2UKGgGR0BjE/yXlbNbaAdN6ANoCEdAmwjVUIcBEXV9lChoBkdAb35CAMDwIGgHS8toCEdAmwjm6GxlhHV9lChoBkdAbpSM2m51/2gHS8FoCEdAmwjszImw7nV9lChoBkdAcR/Qmu1WsGgHS71oCEdAmwml2FFlTXV9lChoBkdAcT+4ptrKvGgHS8BoCEdAmwug84gieXV9lChoBkdAbmZhpg1FY2gHS8hoCEdAmwwEwN9YwXV9lChoBkdAb7Oc9W6shmgHS8BoCEdAmwzXxvvSdHV9lChoBkdAcC1VY6nzhGgHS8JoCEdAmwzXVsk6cXV9lChoBkdAcYVBkqc3EWgHS+xoCEdAmw0uejEehnV9lChoBkdAb/luTA31jGgHS8poCEdAmw1V9Wp6yHV9lChoBkdAcY5yN4qwyWgHS/VoCEdAmw5PgR9PUXV9lChoBkdAcc+7fYSQHWgHS85oCEdAmw66/qPfbnV9lChoBkdAcCDW1c+qzmgHTRsBaAhHQJsPE+EAYHh1fZQoaAZHQHHI8EidJ8RoB0vbaAhHQJsPL6KtPpJ1fZQoaAZHQG/evNVzZHxoB0v9aAhHQJsPejfvWpZ1fZQoaAZHQHGptvbXYlJoB0v1aAhHQJsP0ScslLR1fZQoaAZHQEJsmxdIGyJoB0udaAhHQJsQyYu01Il1fZQoaAZHQG8NjyWiUPhoB0vCaAhHQJsRjUtqYZ51fZQoaAZHQHCH9M0xdptoB00xAWgIR0CbErol2NeddX2UKGgGR0BAwPacqe9SaAdLyGgIR0CbEv3u/k/9dX2UKGgGR0BwFWT3Zf2LaAdL1GgIR0CbE10A93bFdX2UKGgGR0BuB9BSk0rLaAdLw2gIR0CbFSolD4QCdX2UKGgGR0Bw5mUcGTs6aAdNBAFoCEdAmxVnrleWwHV9lChoBkdAcJjL/S6UaGgHS9ZoCEdAmxWsQZn+Q3V9lChoBkdAcZkFs54nnmgHS/NoCEdAmxXcJIDoyXV9lChoBkdAb0vIMjNY82gHS8poCEdAmxYbWd3B6HV9lChoBkdAcDE+tbLU1GgHS7poCEdAmxayD7Ikq3V9lChoBkdAYaYZaV2RrGgHTegDaAhHQJsXFyR0U491fZQoaAZHQHGTnzcynDRoB0v3aAhHQJsXJ1bJOnF1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0db0a77ba5873ad24b216854307ca26690d06cc3b1c1ddd7d9b90b0952b510d8
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04767fb582e24901baf44e4623e5d0b38233ecb911b92fb3f89e649de5c05317
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (168 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 235.22799590000005, "std_reward": 46.581902689578456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-05T09:27:54.568848"}
|