bguisard commited on
Commit
1c00c14
·
1 Parent(s): 1140349

First model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.48 +/- 0.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd32be19690622b7e0016b9cffa3c4df1b179258d850575f9a6eb91b6942aade
3
+ size 107999
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4b0db62c10>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f4b0db5e6c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674426267657121149,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmX2MvxSxbz8Sk/g+X/BLvw0Fyb+rJX2/dViXPxQjxj8QRUw/65A4vtznFz1+o9m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]]",
60
+ "desired_goal": "[[-1.0975829 0.93629575 0.48549706]\n [-0.7966365 -1.5704666 -0.988856 ]\n [ 1.182387 1.5479455 0.7979288 ]\n [-0.18024032 0.03708635 -1.7003019 ]]",
61
+ "observation": "[[ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eN2ujMQnr3v+t89zUuEPWKHCT688lM+D+lfPV4Kcb1Y6u49Lw0FPcTEmz0Gvbg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00094181 -0.07717934 0.10936534]\n [ 0.0645977 0.1343055 0.20698065]\n [ 0.05466562 -0.05884778 0.11665791]\n [ 0.03248328 0.07605889 0.09020428]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE2ba/pWV8L+UhpRSlIwBbJRLMowBdJRHQKO7d8KG+K11fZQoaAZoCWgPQwgLJ2n+mNbev5SGlFKUaBVLMmgWR0Cjuz8FhXr/dX2UKGgGaAloD0MI2h8ot+173r+UhpRSlGgVSzJoFkdAo7sE6FM7EHV9lChoBmgJaA9DCHCUvDrHgO+/lIaUUpRoFUsyaBZHQKO6x6j32251fZQoaAZoCWgPQwh6q65DNaXgv5SGlFKUaBVLMmgWR0CjvI13t8eCdX2UKGgGaAloD0MIzbBR1m8m3r+UhpRSlGgVSzJoFkdAo7xUz41xbXV9lChoBmgJaA9DCAkZyLPLN+a/lIaUUpRoFUsyaBZHQKO8GttALRd1fZQoaAZoCWgPQwifru5YbJPOv5SGlFKUaBVLMmgWR0Cju92joIOZdX2UKGgGaAloD0MIrB4wD5ny2r+UhpRSlGgVSzJoFkdAo72hkbxVhnV9lChoBmgJaA9DCGOXqN4a2Na/lIaUUpRoFUsyaBZHQKO9aN0eU6h1fZQoaAZoCWgPQwiPUDOkiuLiv5SGlFKUaBVLMmgWR0CjvS7p/wy7dX2UKGgGaAloD0MIzt2ul6YI2L+UhpRSlGgVSzJoFkdAo7zxv1lGw3V9lChoBmgJaA9DCPhRDfs9Me2/lIaUUpRoFUsyaBZHQKO+tYuCf6J1fZQoaAZoCWgPQwiJfm399J/cv5SGlFKUaBVLMmgWR0CjvnzJ6po9dX2UKGgGaAloD0MIhxiveVXn47+UhpRSlGgVSzJoFkdAo75C5oXbd3V9lChoBmgJaA9DCJ8e2zLgrOy/lIaUUpRoFUsyaBZHQKO+BfD1oQF1fZQoaAZoCWgPQwhxqyAGuvbcv5SGlFKUaBVLMmgWR0Cjv8ZZ0SyudX2UKGgGaAloD0MIfT1fs1w21b+UhpRSlGgVSzJoFkdAo7+NnCfpU3V9lChoBmgJaA9DCOfj2lAxzta/lIaUUpRoFUsyaBZHQKO/U5n13+x1fZQoaAZoCWgPQwhF1hpK7cXrv5SGlFKUaBVLMmgWR0CjvxZC4SYgdX2UKGgGaAloD0MIh9wMN+Bz67+UhpRSlGgVSzJoFkdAo8ECbYsd1nV9lChoBmgJaA9DCBBbejTVE+e/lIaUUpRoFUsyaBZHQKPAyblzU7V1fZQoaAZoCWgPQwjLK9fbZirYv5SGlFKUaBVLMmgWR0CjwI+18b71dX2UKGgGaAloD0MIe6NWmL7X1L+UhpRSlGgVSzJoFkdAo8BSemNzbXV9lChoBmgJaA9DCPRtwVJdwOC/lIaUUpRoFUsyaBZHQKPCERA8jiZ1fZQoaAZoCWgPQwg/jXvzGybZv5SGlFKUaBVLMmgWR0CjwdhtUGVzdX2UKGgGaAloD0MINuZ1xCEb17+UhpRSlGgVSzJoFkdAo8GedPLxJHV9lChoBmgJaA9DCGB2Tx4Watm/lIaUUpRoFUsyaBZHQKPBYTjebd91fZQoaAZoCWgPQwhIUz2Zf/TNv5SGlFKUaBVLMmgWR0Cjw0ObAk9mdX2UKGgGaAloD0MI9UiD29pC5b+UhpRSlGgVSzJoFkdAo8MK3VkMC3V9lChoBmgJaA9DCKIIqdvZV9i/lIaUUpRoFUsyaBZHQKPC0NdZ7ol1fZQoaAZoCWgPQwh3hNOCF73wv5SGlFKUaBVLMmgWR0CjwpR82JizdX2UKGgGaAloD0MId4cUAyQa57+UhpRSlGgVSzJoFkdAo8RuNedCmnV9lChoBmgJaA9DCCNrDaX2Itm/lIaUUpRoFUsyaBZHQKPENWmP5pJ1fZQoaAZoCWgPQwgtYAK37ubTv5SGlFKUaBVLMmgWR0Cjw/tY8uBddX2UKGgGaAloD0MIFsPVARA38L+UhpRSlGgVSzJoFkdAo8O+FQEZBXV9lChoBmgJaA9DCGEZG7rZH8K/lIaUUpRoFUsyaBZHQKPFgbZOBUd1fZQoaAZoCWgPQwj7OnDOiNLAv5SGlFKUaBVLMmgWR0CjxUmipNsWdX2UKGgGaAloD0MIGLMlqyIc8L+UhpRSlGgVSzJoFkdAo8UPz8P4EnV9lChoBmgJaA9DCDPcgM8PI9G/lIaUUpRoFUsyaBZHQKPE0phF3IN1fZQoaAZoCWgPQwgT86ykFV/tv5SGlFKUaBVLMmgWR0CjxozeO4oadX2UKGgGaAloD0MIouwt5Xwx6r+UhpRSlGgVSzJoFkdAo8ZULtu1nnV9lChoBmgJaA9DCApkdha9U92/lIaUUpRoFUsyaBZHQKPGGiml67d1fZQoaAZoCWgPQwjdlV0wuGbhv5SGlFKUaBVLMmgWR0CjxdzySV4YdX2UKGgGaAloD0MIW3nJ/+Rv57+UhpRSlGgVSzJoFkdAo8fIx33Yc3V9lChoBmgJaA9DCEW3XtODgtq/lIaUUpRoFUsyaBZHQKPHkAYHgP51fZQoaAZoCWgPQwjUSba6nBLlv5SGlFKUaBVLMmgWR0Cjx1aWX1J2dX2UKGgGaAloD0MIbqRskbQb1L+UhpRSlGgVSzJoFkdAo8cZUYKpk3V9lChoBmgJaA9DCFnABG7dzdK/lIaUUpRoFUsyaBZHQKPI3Ryfcvd1fZQoaAZoCWgPQwhMUwQ4vYvNv5SGlFKUaBVLMmgWR0CjyKRgy/KydX2UKGgGaAloD0MIMXvZdtoa5b+UhpRSlGgVSzJoFkdAo8hqZH/cWXV9lChoBmgJaA9DCDhr8L4qF9m/lIaUUpRoFUsyaBZHQKPILVkMCtB1fZQoaAZoCWgPQwibjgBuFi/gv5SGlFKUaBVLMmgWR0CjyengHeJpdX2UKGgGaAloD0MIBg/Tvrm/2L+UhpRSlGgVSzJoFkdAo8mxCa7Va3V9lChoBmgJaA9DCImXp3NFKcm/lIaUUpRoFUsyaBZHQKPJdv+fh/B1fZQoaAZoCWgPQwhR+dfyyvXgv5SGlFKUaBVLMmgWR0CjyTmrS3LFdX2UKGgGaAloD0MIyQVn8PcL4r+UhpRSlGgVSzJoFkdAo8r9vl2eQXV9lChoBmgJaA9DCImbU8kAUN6/lIaUUpRoFUsyaBZHQKPKxPv8ZUF1fZQoaAZoCWgPQwjBAMKHEi3gv5SGlFKUaBVLMmgWR0Cjyor9deIEdX2UKGgGaAloD0MIfLQ4Y5gTzL+UhpRSlGgVSzJoFkdAo8pNtEXtSnV9lChoBmgJaA9DCDwvFRvzOtG/lIaUUpRoFUsyaBZHQKPMERnvlU91fZQoaAZoCWgPQwhpAG+BBMXvv5SGlFKUaBVLMmgWR0Cjy9hcZ9/jdX2UKGgGaAloD0MIUd7H0RxZ1r+UhpRSlGgVSzJoFkdAo8ueQ2dd3XV9lChoBmgJaA9DCOI+cmvSbde/lIaUUpRoFUsyaBZHQKPLYPiDM/11fZQoaAZoCWgPQwgz3lZ6bTbYv5SGlFKUaBVLMmgWR0CjzSahHskZdX2UKGgGaAloD0MIhlrTvOMU1r+UhpRSlGgVSzJoFkdAo8zt3OfNA3V9lChoBmgJaA9DCJvmHafoSOe/lIaUUpRoFUsyaBZHQKPMs9ovi991fZQoaAZoCWgPQwgVONkG7kDjv5SGlFKUaBVLMmgWR0CjzHanaWX1dX2UKGgGaAloD0MID9Qpj24E4L+UhpRSlGgVSzJoFkdAo840PFvQ4XV9lChoBmgJaA9DCG1Wfa62Ytq/lIaUUpRoFUsyaBZHQKPN+7MgU111fZQoaAZoCWgPQwhrmnecoiPVv5SGlFKUaBVLMmgWR0CjzcHCGetkdX2UKGgGaAloD0MI3e7lPjmK7b+UhpRSlGgVSzJoFkdAo82Ei6g/T3V9lChoBmgJaA9DCBMro5HPK+m/lIaUUpRoFUsyaBZHQKPPSfigkC51fZQoaAZoCWgPQwjVlGQdjq7Tv5SGlFKUaBVLMmgWR0CjzxEovzvrdX2UKGgGaAloD0MIiPccWI4Q57+UhpRSlGgVSzJoFkdAo87XLHMlknV9lChoBmgJaA9DCI3sSstIvd6/lIaUUpRoFUsyaBZHQKPOmezUqhF1fZQoaAZoCWgPQwjVPbK5ap7ov5SGlFKUaBVLMmgWR0Cj0Favq1PWdX2UKGgGaAloD0MILudSXFX21L+UhpRSlGgVSzJoFkdAo9Ad89fTkXV9lChoBmgJaA9DCJrrNNJSecG/lIaUUpRoFUsyaBZHQKPP4/IsAed1fZQoaAZoCWgPQwioxks3iUHkv5SGlFKUaBVLMmgWR0Cjz6aEi+tbdX2UKGgGaAloD0MIFJZ4QNmU0L+UhpRSlGgVSzJoFkdAo9FoIv8IiXV9lChoBmgJaA9DCJAUkWEV7+W/lIaUUpRoFUsyaBZHQKPRL2Bas6t1fZQoaAZoCWgPQwhBn8iTpGvav5SGlFKUaBVLMmgWR0Cj0PVX/5tWdX2UKGgGaAloD0MIFva0w1+T0b+UhpRSlGgVSzJoFkdAo9C4DPnjhnV9lChoBmgJaA9DCAgiizTxjvK/lIaUUpRoFUsyaBZHQKPSb0hePaN1fZQoaAZoCWgPQwgcXDrmPGPbv5SGlFKUaBVLMmgWR0Cj0jZ7XxvvdX2UKGgGaAloD0MIqoJRSZ2A07+UhpRSlGgVSzJoFkdAo9H8jHGS6nV9lChoBmgJaA9DCJBKsaNxqM2/lIaUUpRoFUsyaBZHQKPRwBNEgGN1fZQoaAZoCWgPQwj7lGOyuP/Tv5SGlFKUaBVLMmgWR0Cj04G3OObRdX2UKGgGaAloD0MIg09z8iIT3L+UhpRSlGgVSzJoFkdAo9NI9RrJsHV9lChoBmgJaA9DCBFSt7OvPMK/lIaUUpRoFUsyaBZHQKPTD2PDHfd1fZQoaAZoCWgPQwhjtI6qJojcv5SGlFKUaBVLMmgWR0Cj0tLB0p3HdX2UKGgGaAloD0MIGXJsPUM457+UhpRSlGgVSzJoFkdAo9SWSIP9UHV9lChoBmgJaA9DCGlVSzrKQeq/lIaUUpRoFUsyaBZHQKPUXYODrZ91fZQoaAZoCWgPQwg6dHrejQXJv5SGlFKUaBVLMmgWR0Cj1CPi1iOOdX2UKGgGaAloD0MIk1URbjIq7r+UhpRSlGgVSzJoFkdAo9PmzUqhDnV9lChoBmgJaA9DCOYhUz4EVe2/lIaUUpRoFUsyaBZHQKPVuTwlSjx1fZQoaAZoCWgPQwh5eM+B5QjXv5SGlFKUaBVLMmgWR0Cj1YCaiKzidX2UKGgGaAloD0MIxsA6jh8q4r+UhpRSlGgVSzJoFkdAo9VGj2zv7XV9lChoBmgJaA9DCDf8brplh8q/lIaUUpRoFUsyaBZHQKPVCVuaWop1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6b0fd8444247228979008a55549d0d49d501b1485c5ef0ef74a65f7f3dfcf3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59bd60eed5923e4a0f44a5a8b1bf3cedff9045d0d5d99c5c8a498a2ff707f18
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4b0db62c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b0db5e6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674426267657121149, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/eoLGPjWeKD0BTxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmX2MvxSxbz8Sk/g+X/BLvw0Fyb+rJX2/dViXPxQjxj8QRUw/65A4vtznFz1+o9m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTp6gsY+NZ4oPQFPEj83nTS7HEpcOl/LxTqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]\n [0.3877142 0.0411665 0.571518 ]]", "desired_goal": "[[-1.0975829 0.93629575 0.48549706]\n [-0.7966365 -1.5704666 -0.988856 ]\n [ 1.182387 1.5479455 0.7979288 ]\n [-0.18024032 0.03708635 -1.7003019 ]]", "observation": "[[ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]\n [ 0.3877142 0.0411665 0.571518 -0.00275595 0.00084034 0.00150905]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5eN2ujMQnr3v+t89zUuEPWKHCT688lM+D+lfPV4Kcb1Y6u49Lw0FPcTEmz0Gvbg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00094181 -0.07717934 0.10936534]\n [ 0.0645977 0.1343055 0.20698065]\n [ 0.05466562 -0.05884778 0.11665791]\n [ 0.03248328 0.07605889 0.09020428]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE2ba/pWV8L+UhpRSlIwBbJRLMowBdJRHQKO7d8KG+K11fZQoaAZoCWgPQwgLJ2n+mNbev5SGlFKUaBVLMmgWR0Cjuz8FhXr/dX2UKGgGaAloD0MI2h8ot+173r+UhpRSlGgVSzJoFkdAo7sE6FM7EHV9lChoBmgJaA9DCHCUvDrHgO+/lIaUUpRoFUsyaBZHQKO6x6j32251fZQoaAZoCWgPQwh6q65DNaXgv5SGlFKUaBVLMmgWR0CjvI13t8eCdX2UKGgGaAloD0MIzbBR1m8m3r+UhpRSlGgVSzJoFkdAo7xUz41xbXV9lChoBmgJaA9DCAkZyLPLN+a/lIaUUpRoFUsyaBZHQKO8GttALRd1fZQoaAZoCWgPQwifru5YbJPOv5SGlFKUaBVLMmgWR0Cju92joIOZdX2UKGgGaAloD0MIrB4wD5ny2r+UhpRSlGgVSzJoFkdAo72hkbxVhnV9lChoBmgJaA9DCGOXqN4a2Na/lIaUUpRoFUsyaBZHQKO9aN0eU6h1fZQoaAZoCWgPQwiPUDOkiuLiv5SGlFKUaBVLMmgWR0CjvS7p/wy7dX2UKGgGaAloD0MIzt2ul6YI2L+UhpRSlGgVSzJoFkdAo7zxv1lGw3V9lChoBmgJaA9DCPhRDfs9Me2/lIaUUpRoFUsyaBZHQKO+tYuCf6J1fZQoaAZoCWgPQwiJfm399J/cv5SGlFKUaBVLMmgWR0CjvnzJ6po9dX2UKGgGaAloD0MIhxiveVXn47+UhpRSlGgVSzJoFkdAo75C5oXbd3V9lChoBmgJaA9DCJ8e2zLgrOy/lIaUUpRoFUsyaBZHQKO+BfD1oQF1fZQoaAZoCWgPQwhxqyAGuvbcv5SGlFKUaBVLMmgWR0Cjv8ZZ0SyudX2UKGgGaAloD0MIfT1fs1w21b+UhpRSlGgVSzJoFkdAo7+NnCfpU3V9lChoBmgJaA9DCOfj2lAxzta/lIaUUpRoFUsyaBZHQKO/U5n13+x1fZQoaAZoCWgPQwhF1hpK7cXrv5SGlFKUaBVLMmgWR0CjvxZC4SYgdX2UKGgGaAloD0MIh9wMN+Bz67+UhpRSlGgVSzJoFkdAo8ECbYsd1nV9lChoBmgJaA9DCBBbejTVE+e/lIaUUpRoFUsyaBZHQKPAyblzU7V1fZQoaAZoCWgPQwjLK9fbZirYv5SGlFKUaBVLMmgWR0CjwI+18b71dX2UKGgGaAloD0MIe6NWmL7X1L+UhpRSlGgVSzJoFkdAo8BSemNzbXV9lChoBmgJaA9DCPRtwVJdwOC/lIaUUpRoFUsyaBZHQKPCERA8jiZ1fZQoaAZoCWgPQwg/jXvzGybZv5SGlFKUaBVLMmgWR0CjwdhtUGVzdX2UKGgGaAloD0MINuZ1xCEb17+UhpRSlGgVSzJoFkdAo8GedPLxJHV9lChoBmgJaA9DCGB2Tx4Watm/lIaUUpRoFUsyaBZHQKPBYTjebd91fZQoaAZoCWgPQwhIUz2Zf/TNv5SGlFKUaBVLMmgWR0Cjw0ObAk9mdX2UKGgGaAloD0MI9UiD29pC5b+UhpRSlGgVSzJoFkdAo8MK3VkMC3V9lChoBmgJaA9DCKIIqdvZV9i/lIaUUpRoFUsyaBZHQKPC0NdZ7ol1fZQoaAZoCWgPQwh3hNOCF73wv5SGlFKUaBVLMmgWR0CjwpR82JizdX2UKGgGaAloD0MId4cUAyQa57+UhpRSlGgVSzJoFkdAo8RuNedCmnV9lChoBmgJaA9DCCNrDaX2Itm/lIaUUpRoFUsyaBZHQKPENWmP5pJ1fZQoaAZoCWgPQwgtYAK37ubTv5SGlFKUaBVLMmgWR0Cjw/tY8uBddX2UKGgGaAloD0MIFsPVARA38L+UhpRSlGgVSzJoFkdAo8O+FQEZBXV9lChoBmgJaA9DCGEZG7rZH8K/lIaUUpRoFUsyaBZHQKPFgbZOBUd1fZQoaAZoCWgPQwj7OnDOiNLAv5SGlFKUaBVLMmgWR0CjxUmipNsWdX2UKGgGaAloD0MIGLMlqyIc8L+UhpRSlGgVSzJoFkdAo8UPz8P4EnV9lChoBmgJaA9DCDPcgM8PI9G/lIaUUpRoFUsyaBZHQKPE0phF3IN1fZQoaAZoCWgPQwgT86ykFV/tv5SGlFKUaBVLMmgWR0CjxozeO4oadX2UKGgGaAloD0MIouwt5Xwx6r+UhpRSlGgVSzJoFkdAo8ZULtu1nnV9lChoBmgJaA9DCApkdha9U92/lIaUUpRoFUsyaBZHQKPGGiml67d1fZQoaAZoCWgPQwjdlV0wuGbhv5SGlFKUaBVLMmgWR0CjxdzySV4YdX2UKGgGaAloD0MIW3nJ/+Rv57+UhpRSlGgVSzJoFkdAo8fIx33Yc3V9lChoBmgJaA9DCEW3XtODgtq/lIaUUpRoFUsyaBZHQKPHkAYHgP51fZQoaAZoCWgPQwjUSba6nBLlv5SGlFKUaBVLMmgWR0Cjx1aWX1J2dX2UKGgGaAloD0MIbqRskbQb1L+UhpRSlGgVSzJoFkdAo8cZUYKpk3V9lChoBmgJaA9DCFnABG7dzdK/lIaUUpRoFUsyaBZHQKPI3Ryfcvd1fZQoaAZoCWgPQwhMUwQ4vYvNv5SGlFKUaBVLMmgWR0CjyKRgy/KydX2UKGgGaAloD0MIMXvZdtoa5b+UhpRSlGgVSzJoFkdAo8hqZH/cWXV9lChoBmgJaA9DCDhr8L4qF9m/lIaUUpRoFUsyaBZHQKPILVkMCtB1fZQoaAZoCWgPQwibjgBuFi/gv5SGlFKUaBVLMmgWR0CjyengHeJpdX2UKGgGaAloD0MIBg/Tvrm/2L+UhpRSlGgVSzJoFkdAo8mxCa7Va3V9lChoBmgJaA9DCImXp3NFKcm/lIaUUpRoFUsyaBZHQKPJdv+fh/B1fZQoaAZoCWgPQwhR+dfyyvXgv5SGlFKUaBVLMmgWR0CjyTmrS3LFdX2UKGgGaAloD0MIyQVn8PcL4r+UhpRSlGgVSzJoFkdAo8r9vl2eQXV9lChoBmgJaA9DCImbU8kAUN6/lIaUUpRoFUsyaBZHQKPKxPv8ZUF1fZQoaAZoCWgPQwjBAMKHEi3gv5SGlFKUaBVLMmgWR0Cjyor9deIEdX2UKGgGaAloD0MIfLQ4Y5gTzL+UhpRSlGgVSzJoFkdAo8pNtEXtSnV9lChoBmgJaA9DCDwvFRvzOtG/lIaUUpRoFUsyaBZHQKPMERnvlU91fZQoaAZoCWgPQwhpAG+BBMXvv5SGlFKUaBVLMmgWR0Cjy9hcZ9/jdX2UKGgGaAloD0MIUd7H0RxZ1r+UhpRSlGgVSzJoFkdAo8ueQ2dd3XV9lChoBmgJaA9DCOI+cmvSbde/lIaUUpRoFUsyaBZHQKPLYPiDM/11fZQoaAZoCWgPQwgz3lZ6bTbYv5SGlFKUaBVLMmgWR0CjzSahHskZdX2UKGgGaAloD0MIhlrTvOMU1r+UhpRSlGgVSzJoFkdAo8zt3OfNA3V9lChoBmgJaA9DCJvmHafoSOe/lIaUUpRoFUsyaBZHQKPMs9ovi991fZQoaAZoCWgPQwgVONkG7kDjv5SGlFKUaBVLMmgWR0CjzHanaWX1dX2UKGgGaAloD0MID9Qpj24E4L+UhpRSlGgVSzJoFkdAo840PFvQ4XV9lChoBmgJaA9DCG1Wfa62Ytq/lIaUUpRoFUsyaBZHQKPN+7MgU111fZQoaAZoCWgPQwhrmnecoiPVv5SGlFKUaBVLMmgWR0CjzcHCGetkdX2UKGgGaAloD0MI3e7lPjmK7b+UhpRSlGgVSzJoFkdAo82Ei6g/T3V9lChoBmgJaA9DCBMro5HPK+m/lIaUUpRoFUsyaBZHQKPPSfigkC51fZQoaAZoCWgPQwjVlGQdjq7Tv5SGlFKUaBVLMmgWR0CjzxEovzvrdX2UKGgGaAloD0MIiPccWI4Q57+UhpRSlGgVSzJoFkdAo87XLHMlknV9lChoBmgJaA9DCI3sSstIvd6/lIaUUpRoFUsyaBZHQKPOmezUqhF1fZQoaAZoCWgPQwjVPbK5ap7ov5SGlFKUaBVLMmgWR0Cj0Favq1PWdX2UKGgGaAloD0MILudSXFX21L+UhpRSlGgVSzJoFkdAo9Ad89fTkXV9lChoBmgJaA9DCJrrNNJSecG/lIaUUpRoFUsyaBZHQKPP4/IsAed1fZQoaAZoCWgPQwioxks3iUHkv5SGlFKUaBVLMmgWR0Cjz6aEi+tbdX2UKGgGaAloD0MIFJZ4QNmU0L+UhpRSlGgVSzJoFkdAo9FoIv8IiXV9lChoBmgJaA9DCJAUkWEV7+W/lIaUUpRoFUsyaBZHQKPRL2Bas6t1fZQoaAZoCWgPQwhBn8iTpGvav5SGlFKUaBVLMmgWR0Cj0PVX/5tWdX2UKGgGaAloD0MIFva0w1+T0b+UhpRSlGgVSzJoFkdAo9C4DPnjhnV9lChoBmgJaA9DCAgiizTxjvK/lIaUUpRoFUsyaBZHQKPSb0hePaN1fZQoaAZoCWgPQwgcXDrmPGPbv5SGlFKUaBVLMmgWR0Cj0jZ7XxvvdX2UKGgGaAloD0MIqoJRSZ2A07+UhpRSlGgVSzJoFkdAo9H8jHGS6nV9lChoBmgJaA9DCJBKsaNxqM2/lIaUUpRoFUsyaBZHQKPRwBNEgGN1fZQoaAZoCWgPQwj7lGOyuP/Tv5SGlFKUaBVLMmgWR0Cj04G3OObRdX2UKGgGaAloD0MIg09z8iIT3L+UhpRSlGgVSzJoFkdAo9NI9RrJsHV9lChoBmgJaA9DCBFSt7OvPMK/lIaUUpRoFUsyaBZHQKPTD2PDHfd1fZQoaAZoCWgPQwhjtI6qJojcv5SGlFKUaBVLMmgWR0Cj0tLB0p3HdX2UKGgGaAloD0MIGXJsPUM457+UhpRSlGgVSzJoFkdAo9SWSIP9UHV9lChoBmgJaA9DCGlVSzrKQeq/lIaUUpRoFUsyaBZHQKPUXYODrZ91fZQoaAZoCWgPQwg6dHrejQXJv5SGlFKUaBVLMmgWR0Cj1CPi1iOOdX2UKGgGaAloD0MIk1URbjIq7r+UhpRSlGgVSzJoFkdAo9PmzUqhDnV9lChoBmgJaA9DCOYhUz4EVe2/lIaUUpRoFUsyaBZHQKPVuTwlSjx1fZQoaAZoCWgPQwh5eM+B5QjXv5SGlFKUaBVLMmgWR0Cj1YCaiKzidX2UKGgGaAloD0MIxsA6jh8q4r+UhpRSlGgVSzJoFkdAo9VGj2zv7XV9lChoBmgJaA9DCDf8brplh8q/lIaUUpRoFUsyaBZHQKPVCVuaWop1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (276 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.4766285490739392, "std_reward": 0.21538295222680537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T23:07:20.891566"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44bec1b02d978d454b050af3b08766b176918535ecc9874b4a93a2bd0672869c
3
+ size 3056