bob80333's picture
Upload hyperparams.yaml
629bfce
# ############################################################################
# Model: E2E ST JA->EN with Conformer
# Encoder: Conformer Encoder
# Decoder: Conformer Decoder + (CTC/ATT joint)
# Tokens: BPE
# losses: CTC
# Training: Custom JA->EN youtube scrape, ~600h
# Authors: Eric Engelhart, 2022
# ############################################################################
# Tokenier initialization
tokenizer: !new:sentencepiece.SentencePieceProcessor
# Features
sample_rate: 16000
n_fft: 400
n_mels: 80
# normalization
normalizer: !new:speechbrain.processing.features.InputNormalization
norm_type: global
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
####################### Model parameters ###########################
# Transformer
d_model: 384
nhead: 6
num_encoder_layers: 12
num_decoder_layers: 6
d_ffn: 1536
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
vocab_size: 5000
attention_type: "regularMHA" # "RelPosMHAXL" or "regularMHA"
kernel_size: 15
encoder_module: conformer
# Outputs
blank_index: 0
label_smoothing: 0.1
pad_index: 0
bos_index: 1
eos_index: 2
unk_index: 0
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
valid_search_interval: 2
valid_beam_size: 1
test_beam_size: 25
############################## models ################################
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
input_shape: (8, 10, 80)
num_blocks: 2
num_layers_per_block: 1
out_channels: (256, 256)
kernel_sizes: (3, 3)
strides: (2, 2)
residuals: (False, False)
Transformer: !new:speechbrain.lobes.models.transformer.TransformerST.TransformerST # yamllint disable-line rule:line-length
input_size: 5120
tgt_vocab: !ref <output_neurons>
d_model: !ref <d_model>
nhead: !ref <nhead>
num_encoder_layers: !ref <num_encoder_layers>
num_decoder_layers: !ref <num_decoder_layers>
d_ffn: !ref <d_ffn>
dropout: !ref <transformer_dropout>
activation: !ref <activation>
ctc_weight: 0
asr_weight: 0
mt_weight: 0
asr_tgt_vocab: !ref <output_neurons>
mt_src_vocab: !ref <output_neurons>
attention_type: !ref <attention_type>
kernel_size: !ref <kernel_size>
encoder_module: !ref <encoder_module>
normalize_before: True
causal: False
max_length: 5000
# only when multi-task setting is used
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
# when asr-weight > 0 and ctc-weight < 1
asr_seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <vocab_size>
st_model: !new:torch.nn.ModuleList
- [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>]
Tencoder: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
transformer: !ref <Transformer>
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
input_shape: [null, null, !ref <n_mels>]
compute_features: !ref <compute_features>
normalize: !ref <normalizer>
cnn: !ref <CNN>
transformer_encoder: !ref <Tencoder>
decoder: !new:speechbrain.decoders.S2STransformerBeamSearch
modules: [!ref <Transformer>, !ref <seq_lin>, null]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
using_eos_threshold: True
length_normalization: True
ctc_weight: 0
lm_weight: 0
modules:
compute_features: !ref <compute_features>
normalizer: !ref <normalizer>
pre_transformer: !ref <CNN>
Transformer: !ref <Transformer>
asr_model: !ref <st_model>
encoder: !ref <encoder>
decoder: !ref <decoder>
log_softmax: !new:torch.nn.LogSoftmax
dim: -1
# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
tokenizer: !ref <tokenizer>
st: !ref <st_model>
normalizer: !ref <normalizer>