toxuin commited on
Commit
348932f
·
1 Parent(s): e76a39c

Final model

Browse files
Files changed (3) hide show
  1. README.md +400 -7
  2. generation_config.json +1 -1
  3. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,8 +1,401 @@
1
  ---
2
- datasets:
3
- - iarfmoose/question_generator
4
- - Defalt-404/Bittensor_validator
5
- - multi_news
6
- - cnn_dailymail
7
- library_name: peft
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: cerebras/btlm-3b-8k-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: app/bt_qa-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # app/bt_qa-out
16
+
17
+ This model is a fine-tuned version of [cerebras/btlm-3b-8k-base](https://huggingface.co/cerebras/btlm-3b-8k-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.7451
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 8.5e-05
39
+ - train_batch_size: 3
40
+ - eval_batch_size: 3
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - lr_scheduler_warmup_steps: 32
45
+ - num_epochs: 1
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:------:|:---------------:|
51
+ | 2.7377 | 0.0 | 500 | 2.5700 |
52
+ | 2.5689 | 0.01 | 1000 | 2.4172 |
53
+ | 2.6676 | 0.01 | 1500 | 2.3622 |
54
+ | 2.4234 | 0.01 | 2000 | 2.3293 |
55
+ | 2.2221 | 0.01 | 2500 | 2.3090 |
56
+ | 2.3873 | 0.02 | 3000 | 2.2940 |
57
+ | 2.2688 | 0.02 | 3500 | 2.2644 |
58
+ | 2.4194 | 0.02 | 4000 | 2.2725 |
59
+ | 2.4086 | 0.03 | 4500 | 2.2561 |
60
+ | 2.4476 | 0.03 | 5000 | 2.2477 |
61
+ | 2.1512 | 0.03 | 5500 | 2.2330 |
62
+ | 2.1428 | 0.03 | 6000 | 2.2235 |
63
+ | 2.2834 | 0.04 | 6500 | 2.2141 |
64
+ | 2.2918 | 0.04 | 7000 | 2.2124 |
65
+ | 2.4352 | 0.04 | 7500 | 2.2074 |
66
+ | 1.7196 | 0.05 | 8000 | 2.2038 |
67
+ | 2.2394 | 0.05 | 8500 | 2.1973 |
68
+ | 2.1632 | 0.05 | 9000 | 2.1856 |
69
+ | 2.4313 | 0.06 | 9500 | 2.1820 |
70
+ | 2.4584 | 0.06 | 10000 | 2.1764 |
71
+ | 2.3359 | 0.06 | 10500 | 2.1780 |
72
+ | 2.2105 | 0.06 | 11000 | 2.1671 |
73
+ | 2.3152 | 0.07 | 11500 | 2.1603 |
74
+ | 2.3012 | 0.07 | 12000 | 2.1572 |
75
+ | 2.4636 | 0.07 | 12500 | 2.1553 |
76
+ | 2.0974 | 0.08 | 13000 | 2.1511 |
77
+ | 2.298 | 0.08 | 13500 | 2.1481 |
78
+ | 2.3312 | 0.08 | 14000 | 2.1445 |
79
+ | 2.5315 | 0.08 | 14500 | 2.1381 |
80
+ | 2.1854 | 0.09 | 15000 | 2.1364 |
81
+ | 2.3069 | 0.09 | 15500 | 2.1355 |
82
+ | 2.0756 | 0.09 | 16000 | 2.1331 |
83
+ | 2.0094 | 0.1 | 16500 | 2.1306 |
84
+ | 2.2674 | 0.1 | 17000 | 2.1230 |
85
+ | 1.8427 | 0.1 | 17500 | 2.1176 |
86
+ | 2.2277 | 0.1 | 18000 | 2.1168 |
87
+ | 2.1398 | 0.11 | 18500 | 2.1152 |
88
+ | 1.9927 | 0.11 | 19000 | 2.1088 |
89
+ | 2.0119 | 0.11 | 19500 | 2.1105 |
90
+ | 2.5796 | 0.12 | 20000 | 2.1040 |
91
+ | 1.3256 | 0.12 | 20500 | 2.0993 |
92
+ | 2.2051 | 0.12 | 21000 | 2.0992 |
93
+ | 1.628 | 0.13 | 21500 | 2.0944 |
94
+ | 2.1926 | 0.13 | 22000 | 2.0927 |
95
+ | 1.6482 | 0.13 | 22500 | 2.0873 |
96
+ | 2.1122 | 0.13 | 23000 | 2.0830 |
97
+ | 1.7405 | 0.14 | 23500 | 2.0828 |
98
+ | 2.2685 | 0.14 | 24000 | 2.0784 |
99
+ | 2.1062 | 0.14 | 24500 | 2.0766 |
100
+ | 2.1308 | 0.15 | 25000 | 2.0714 |
101
+ | 1.9122 | 0.15 | 25500 | 2.0719 |
102
+ | 2.3549 | 0.15 | 26000 | 2.0643 |
103
+ | 2.2159 | 0.15 | 26500 | 2.0655 |
104
+ | 1.493 | 0.16 | 27000 | 2.0598 |
105
+ | 1.893 | 0.16 | 27500 | 2.0557 |
106
+ | 2.1902 | 0.16 | 28000 | 2.0533 |
107
+ | 2.2353 | 0.17 | 28500 | 2.0524 |
108
+ | 1.8736 | 0.17 | 29000 | 2.0519 |
109
+ | 2.0511 | 0.17 | 29500 | 2.0449 |
110
+ | 1.2872 | 0.17 | 30000 | 2.0453 |
111
+ | 1.6353 | 0.18 | 30500 | 2.0377 |
112
+ | 1.992 | 0.18 | 31000 | 2.0419 |
113
+ | 2.3586 | 0.18 | 31500 | 2.0353 |
114
+ | 1.9453 | 0.19 | 32000 | 2.0330 |
115
+ | 2.1322 | 0.19 | 32500 | 2.0305 |
116
+ | 2.2887 | 0.19 | 33000 | 2.0253 |
117
+ | 2.0268 | 0.2 | 33500 | 2.0267 |
118
+ | 1.8397 | 0.2 | 34000 | 2.0207 |
119
+ | 2.5165 | 0.2 | 34500 | 2.0202 |
120
+ | 1.9142 | 0.2 | 35000 | 2.0139 |
121
+ | 1.5993 | 0.21 | 35500 | 2.0179 |
122
+ | 2.1691 | 0.21 | 36000 | 2.0102 |
123
+ | 2.4948 | 0.21 | 36500 | 2.0089 |
124
+ | 1.5422 | 0.22 | 37000 | 2.0039 |
125
+ | 1.4566 | 0.22 | 37500 | 2.0014 |
126
+ | 1.852 | 0.22 | 38000 | 2.0043 |
127
+ | 2.199 | 0.22 | 38500 | 1.9987 |
128
+ | 1.4852 | 0.23 | 39000 | 1.9976 |
129
+ | 1.3 | 0.23 | 39500 | 1.9936 |
130
+ | 2.1237 | 0.23 | 40000 | 1.9917 |
131
+ | 1.691 | 0.24 | 40500 | 1.9887 |
132
+ | 2.2169 | 0.24 | 41000 | 1.9870 |
133
+ | 2.1991 | 0.24 | 41500 | 1.9851 |
134
+ | 1.9517 | 0.24 | 42000 | 1.9806 |
135
+ | 1.6369 | 0.25 | 42500 | 1.9762 |
136
+ | 2.2759 | 0.25 | 43000 | 1.9753 |
137
+ | 2.2923 | 0.25 | 43500 | 1.9748 |
138
+ | 2.2552 | 0.26 | 44000 | 1.9702 |
139
+ | 2.066 | 0.26 | 44500 | 1.9683 |
140
+ | 2.2703 | 0.26 | 45000 | 1.9686 |
141
+ | 2.3544 | 0.27 | 45500 | 1.9648 |
142
+ | 2.255 | 0.27 | 46000 | 1.9635 |
143
+ | 1.8732 | 0.27 | 46500 | 1.9639 |
144
+ | 2.1203 | 0.27 | 47000 | 1.9590 |
145
+ | 2.1314 | 0.28 | 47500 | 1.9573 |
146
+ | 1.8511 | 0.28 | 48000 | 1.9533 |
147
+ | 2.1471 | 0.28 | 48500 | 1.9514 |
148
+ | 1.8417 | 0.29 | 49000 | 1.9509 |
149
+ | 2.4485 | 0.29 | 49500 | 1.9502 |
150
+ | 2.0708 | 0.29 | 50000 | 1.9455 |
151
+ | 1.8272 | 0.29 | 50500 | 1.9416 |
152
+ | 1.6232 | 0.3 | 51000 | 1.9380 |
153
+ | 1.6785 | 0.3 | 51500 | 1.9358 |
154
+ | 1.5734 | 0.3 | 52000 | 1.9313 |
155
+ | 1.9737 | 0.31 | 52500 | 1.9301 |
156
+ | 1.8393 | 0.31 | 53000 | 1.9295 |
157
+ | 1.4789 | 0.31 | 53500 | 1.9281 |
158
+ | 2.2062 | 0.31 | 54000 | 1.9273 |
159
+ | 2.3501 | 0.32 | 54500 | 1.9236 |
160
+ | 2.2756 | 0.32 | 55000 | 1.9218 |
161
+ | 2.1001 | 0.32 | 55500 | 1.9215 |
162
+ | 2.0342 | 0.33 | 56000 | 1.9179 |
163
+ | 1.8066 | 0.33 | 56500 | 1.9143 |
164
+ | 1.8322 | 0.33 | 57000 | 1.9137 |
165
+ | 2.0926 | 0.34 | 57500 | 1.9106 |
166
+ | 2.2106 | 0.34 | 58000 | 1.9083 |
167
+ | 2.0666 | 0.34 | 58500 | 1.9055 |
168
+ | 2.2082 | 0.34 | 59000 | 1.9026 |
169
+ | 2.1768 | 0.35 | 59500 | 1.9007 |
170
+ | 1.7091 | 0.35 | 60000 | 1.8967 |
171
+ | 1.7585 | 0.35 | 60500 | 1.8946 |
172
+ | 1.8968 | 0.36 | 61000 | 1.8936 |
173
+ | 2.107 | 0.36 | 61500 | 1.8906 |
174
+ | 1.5162 | 0.36 | 62000 | 1.8870 |
175
+ | 2.0642 | 0.36 | 62500 | 1.8836 |
176
+ | 2.0399 | 0.37 | 63000 | 1.8813 |
177
+ | 2.3971 | 0.37 | 63500 | 1.8785 |
178
+ | 1.7433 | 0.37 | 64000 | 1.8797 |
179
+ | 2.0971 | 0.38 | 64500 | 1.8743 |
180
+ | 1.8212 | 0.38 | 65000 | 1.8726 |
181
+ | 2.1023 | 0.38 | 65500 | 1.8695 |
182
+ | 1.9735 | 0.38 | 66000 | 1.8674 |
183
+ | 1.3196 | 0.39 | 66500 | 1.8657 |
184
+ | 1.9825 | 0.39 | 67000 | 1.8629 |
185
+ | 2.0356 | 0.39 | 67500 | 1.8604 |
186
+ | 1.8522 | 0.4 | 68000 | 1.8581 |
187
+ | 2.2666 | 0.4 | 68500 | 1.8568 |
188
+ | 2.3575 | 0.4 | 69000 | 1.8538 |
189
+ | 2.0086 | 0.41 | 69500 | 1.8537 |
190
+ | 1.9811 | 0.41 | 70000 | 1.8512 |
191
+ | 2.0702 | 0.41 | 70500 | 1.8485 |
192
+ | 1.8554 | 0.41 | 71000 | 1.8456 |
193
+ | 0.5356 | 0.42 | 71500 | 1.8437 |
194
+ | 1.4742 | 0.42 | 72000 | 1.8413 |
195
+ | 2.1901 | 0.42 | 72500 | 1.8420 |
196
+ | 1.7868 | 0.43 | 73000 | 1.8383 |
197
+ | 1.3144 | 0.43 | 73500 | 1.8371 |
198
+ | 2.1158 | 0.43 | 74000 | 1.8347 |
199
+ | 2.0779 | 0.43 | 74500 | 1.8331 |
200
+ | 1.9756 | 0.44 | 75000 | 1.8323 |
201
+ | 2.3395 | 0.44 | 75500 | 1.8309 |
202
+ | 1.895 | 0.44 | 76000 | 1.8283 |
203
+ | 2.0369 | 0.45 | 76500 | 1.8274 |
204
+ | 1.8068 | 0.45 | 77000 | 1.8251 |
205
+ | 2.2153 | 0.45 | 77500 | 1.8227 |
206
+ | 2.1389 | 0.45 | 78000 | 1.8212 |
207
+ | 1.9166 | 0.46 | 78500 | 1.8197 |
208
+ | 1.711 | 0.46 | 79000 | 1.8187 |
209
+ | 1.9102 | 0.46 | 79500 | 1.8165 |
210
+ | 0.8358 | 0.47 | 80000 | 1.8163 |
211
+ | 1.7278 | 0.47 | 80500 | 1.8148 |
212
+ | 1.601 | 0.47 | 81000 | 1.8126 |
213
+ | 1.9794 | 0.48 | 81500 | 1.8107 |
214
+ | 1.7323 | 0.48 | 82000 | 1.8095 |
215
+ | 2.2911 | 0.48 | 82500 | 1.8090 |
216
+ | 1.8962 | 0.48 | 83000 | 1.8065 |
217
+ | 2.3055 | 0.49 | 83500 | 1.8052 |
218
+ | 1.6899 | 0.49 | 84000 | 1.8037 |
219
+ | 1.6409 | 0.49 | 84500 | 1.8031 |
220
+ | 1.9116 | 0.5 | 85000 | 1.8011 |
221
+ | 0.6875 | 0.5 | 85500 | 1.8003 |
222
+ | 2.0829 | 0.5 | 86000 | 1.7983 |
223
+ | 1.5716 | 0.5 | 86500 | 1.7981 |
224
+ | 2.4537 | 0.51 | 87000 | 1.7961 |
225
+ | 1.8236 | 0.51 | 87500 | 1.7942 |
226
+ | 1.641 | 0.51 | 88000 | 1.7931 |
227
+ | 1.5533 | 0.52 | 88500 | 1.7916 |
228
+ | 1.679 | 0.52 | 89000 | 1.7902 |
229
+ | 2.1463 | 0.52 | 89500 | 1.7893 |
230
+ | 1.5477 | 0.52 | 90000 | 1.7884 |
231
+ | 1.2346 | 0.53 | 90500 | 1.7873 |
232
+ | 1.3352 | 0.53 | 91000 | 1.7859 |
233
+ | 2.1039 | 0.53 | 91500 | 1.7850 |
234
+ | 2.0818 | 0.54 | 92000 | 1.7834 |
235
+ | 1.3987 | 0.54 | 92500 | 1.7830 |
236
+ | 1.4544 | 0.54 | 93000 | 1.7827 |
237
+ | 0.4043 | 0.55 | 93500 | 1.7811 |
238
+ | 2.0149 | 0.55 | 94000 | 1.7794 |
239
+ | 1.9845 | 0.55 | 94500 | 1.7789 |
240
+ | 2.1053 | 0.55 | 95000 | 1.7775 |
241
+ | 2.1572 | 0.56 | 95500 | 1.7768 |
242
+ | 2.0754 | 0.56 | 96000 | 1.7761 |
243
+ | 1.7675 | 0.56 | 96500 | 1.7754 |
244
+ | 2.0023 | 0.57 | 97000 | 1.7743 |
245
+ | 1.2653 | 0.57 | 97500 | 1.7736 |
246
+ | 1.5566 | 0.57 | 98000 | 1.7728 |
247
+ | 1.9408 | 0.57 | 98500 | 1.7724 |
248
+ | 2.0936 | 0.58 | 99000 | 1.7713 |
249
+ | 0.5687 | 0.58 | 99500 | 1.7706 |
250
+ | 2.2833 | 0.58 | 100000 | 1.7702 |
251
+ | 1.6689 | 0.59 | 100500 | 1.7690 |
252
+ | 1.5198 | 0.59 | 101000 | 1.7684 |
253
+ | 1.6968 | 0.59 | 101500 | 1.7679 |
254
+ | 2.2034 | 0.59 | 102000 | 1.7674 |
255
+ | 1.7902 | 0.6 | 102500 | 1.7665 |
256
+ | 2.0557 | 0.6 | 103000 | 1.7658 |
257
+ | 1.8617 | 0.6 | 103500 | 1.7650 |
258
+ | 1.8749 | 0.61 | 104000 | 1.7637 |
259
+ | 1.7674 | 0.61 | 104500 | 1.7632 |
260
+ | 1.4269 | 0.61 | 105000 | 1.7627 |
261
+ | 1.989 | 0.62 | 105500 | 1.7621 |
262
+ | 2.1026 | 0.62 | 106000 | 1.7615 |
263
+ | 2.0304 | 0.62 | 106500 | 1.7609 |
264
+ | 1.6286 | 0.62 | 107000 | 1.7603 |
265
+ | 0.9544 | 0.63 | 107500 | 1.7599 |
266
+ | 1.6421 | 0.63 | 108000 | 1.7588 |
267
+ | 1.9841 | 0.63 | 108500 | 1.7586 |
268
+ | 1.7453 | 0.64 | 109000 | 1.7581 |
269
+ | 1.2119 | 0.64 | 109500 | 1.7575 |
270
+ | 2.1092 | 0.64 | 110000 | 1.7568 |
271
+ | 2.0849 | 0.64 | 110500 | 1.7564 |
272
+ | 1.9162 | 0.65 | 111000 | 1.7562 |
273
+ | 1.01 | 0.65 | 111500 | 1.7560 |
274
+ | 1.301 | 0.65 | 112000 | 1.7556 |
275
+ | 0.315 | 0.66 | 112500 | 1.7552 |
276
+ | 1.9964 | 0.66 | 113000 | 1.7548 |
277
+ | 2.4035 | 0.66 | 113500 | 1.7544 |
278
+ | 1.3559 | 0.66 | 114000 | 1.7542 |
279
+ | 2.1874 | 0.67 | 114500 | 1.7538 |
280
+ | 1.4373 | 0.67 | 115000 | 1.7534 |
281
+ | 0.0639 | 0.67 | 115500 | 1.7529 |
282
+ | 1.7667 | 0.68 | 116000 | 1.7526 |
283
+ | 1.6204 | 0.68 | 116500 | 1.7524 |
284
+ | 1.9859 | 0.68 | 117000 | 1.7521 |
285
+ | 0.9717 | 0.69 | 117500 | 1.7516 |
286
+ | 1.8844 | 0.69 | 118000 | 1.7514 |
287
+ | 1.3336 | 0.69 | 118500 | 1.7509 |
288
+ | 1.5781 | 0.69 | 119000 | 1.7506 |
289
+ | 1.8449 | 0.7 | 119500 | 1.7505 |
290
+ | 1.5305 | 0.7 | 120000 | 1.7503 |
291
+ | 2.1904 | 0.7 | 120500 | 1.7500 |
292
+ | 2.2285 | 0.71 | 121000 | 1.7496 |
293
+ | 1.8097 | 0.71 | 121500 | 1.7494 |
294
+ | 2.3631 | 0.71 | 122000 | 1.7493 |
295
+ | 2.0893 | 0.71 | 122500 | 1.7491 |
296
+ | 2.1201 | 0.72 | 123000 | 1.7489 |
297
+ | 1.8334 | 0.72 | 123500 | 1.7488 |
298
+ | 2.0222 | 0.72 | 124000 | 1.7486 |
299
+ | 1.6339 | 0.73 | 124500 | 1.7484 |
300
+ | 1.6754 | 0.73 | 125000 | 1.7482 |
301
+ | 1.3973 | 0.73 | 125500 | 1.7480 |
302
+ | 2.0594 | 0.73 | 126000 | 1.7479 |
303
+ | 1.8674 | 0.74 | 126500 | 1.7478 |
304
+ | 2.1948 | 0.74 | 127000 | 1.7476 |
305
+ | 1.4148 | 0.74 | 127500 | 1.7475 |
306
+ | 1.6734 | 0.75 | 128000 | 1.7473 |
307
+ | 2.2787 | 0.75 | 128500 | 1.7472 |
308
+ | 1.8999 | 0.75 | 129000 | 1.7471 |
309
+ | 1.6945 | 0.76 | 129500 | 1.7470 |
310
+ | 2.0165 | 0.76 | 130000 | 1.7469 |
311
+ | 2.2232 | 0.76 | 130500 | 1.7468 |
312
+ | 1.6201 | 0.76 | 131000 | 1.7466 |
313
+ | 2.4878 | 0.77 | 131500 | 1.7465 |
314
+ | 1.5317 | 0.77 | 132000 | 1.7465 |
315
+ | 1.9361 | 0.77 | 132500 | 1.7464 |
316
+ | 1.7127 | 0.78 | 133000 | 1.7463 |
317
+ | 1.7045 | 0.78 | 133500 | 1.7462 |
318
+ | 2.1827 | 0.78 | 134000 | 1.7461 |
319
+ | 2.0534 | 0.78 | 134500 | 1.7461 |
320
+ | 2.0808 | 0.79 | 135000 | 1.7460 |
321
+ | 1.9572 | 0.79 | 135500 | 1.7459 |
322
+ | 1.8762 | 0.79 | 136000 | 1.7459 |
323
+ | 1.4686 | 0.8 | 136500 | 1.7458 |
324
+ | 1.6241 | 0.8 | 137000 | 1.7458 |
325
+ | 1.4219 | 0.8 | 137500 | 1.7457 |
326
+ | 2.1605 | 0.8 | 138000 | 1.7457 |
327
+ | 2.1298 | 0.81 | 138500 | 1.7456 |
328
+ | 1.414 | 0.81 | 139000 | 1.7456 |
329
+ | 1.0115 | 0.81 | 139500 | 1.7455 |
330
+ | 1.9471 | 0.82 | 140000 | 1.7455 |
331
+ | 1.8873 | 0.82 | 140500 | 1.7455 |
332
+ | 1.8286 | 0.82 | 141000 | 1.7454 |
333
+ | 2.1418 | 0.83 | 141500 | 1.7454 |
334
+ | 1.9755 | 0.83 | 142000 | 1.7454 |
335
+ | 1.6908 | 0.83 | 142500 | 1.7454 |
336
+ | 2.3842 | 0.83 | 143000 | 1.7453 |
337
+ | 1.7665 | 0.84 | 143500 | 1.7453 |
338
+ | 1.8266 | 0.84 | 144000 | 1.7453 |
339
+ | 0.8768 | 0.84 | 144500 | 1.7453 |
340
+ | 1.2274 | 0.85 | 145000 | 1.7453 |
341
+ | 1.6647 | 0.85 | 145500 | 1.7453 |
342
+ | 1.4071 | 0.85 | 146000 | 1.7452 |
343
+ | 1.6073 | 0.85 | 146500 | 1.7452 |
344
+ | 2.201 | 0.86 | 147000 | 1.7452 |
345
+ | 1.5504 | 0.86 | 147500 | 1.7452 |
346
+ | 1.4377 | 0.86 | 148000 | 1.7452 |
347
+ | 1.4453 | 0.87 | 148500 | 1.7452 |
348
+ | 1.6929 | 0.87 | 149000 | 1.7451 |
349
+ | 1.7631 | 0.87 | 149500 | 1.7451 |
350
+ | 2.0868 | 0.87 | 150000 | 1.7451 |
351
+ | 0.6434 | 0.88 | 150500 | 1.7451 |
352
+ | 1.4851 | 0.88 | 151000 | 1.7451 |
353
+ | 1.5365 | 0.88 | 151500 | 1.7451 |
354
+ | 1.8129 | 0.89 | 152000 | 1.7451 |
355
+ | 1.1623 | 0.89 | 152500 | 1.7451 |
356
+ | 2.0714 | 0.89 | 153000 | 1.7451 |
357
+ | 1.9363 | 0.9 | 153500 | 1.7451 |
358
+ | 1.6408 | 0.9 | 154000 | 1.7451 |
359
+ | 0.618 | 0.9 | 154500 | 1.7451 |
360
+ | 1.7957 | 0.9 | 155000 | 1.7451 |
361
+ | 2.0056 | 0.91 | 155500 | 1.7451 |
362
+ | 1.3893 | 0.91 | 156000 | 1.7451 |
363
+ | 2.1426 | 0.91 | 156500 | 1.7451 |
364
+ | 1.6766 | 0.92 | 157000 | 1.7451 |
365
+ | 1.4206 | 0.92 | 157500 | 1.7451 |
366
+ | 1.7285 | 0.92 | 158000 | 1.7451 |
367
+ | 1.5779 | 0.92 | 158500 | 1.7451 |
368
+ | 1.8675 | 0.93 | 159000 | 1.7451 |
369
+ | 2.0217 | 0.93 | 159500 | 1.7451 |
370
+ | 0.9516 | 0.93 | 160000 | 1.7451 |
371
+ | 2.219 | 0.94 | 160500 | 1.7450 |
372
+ | 1.6214 | 0.94 | 161000 | 1.7451 |
373
+ | 1.7134 | 0.94 | 161500 | 1.7451 |
374
+ | 1.6128 | 0.94 | 162000 | 1.7451 |
375
+ | 2.0817 | 0.95 | 162500 | 1.7450 |
376
+ | 1.8055 | 0.95 | 163000 | 1.7451 |
377
+ | 1.909 | 0.95 | 163500 | 1.7451 |
378
+ | 1.7844 | 0.96 | 164000 | 1.7451 |
379
+ | 2.0719 | 0.96 | 164500 | 1.7451 |
380
+ | 1.8698 | 0.96 | 165000 | 1.7451 |
381
+ | 1.6926 | 0.96 | 165500 | 1.7451 |
382
+ | 2.2161 | 0.97 | 166000 | 1.7451 |
383
+ | 2.1111 | 0.97 | 166500 | 1.7451 |
384
+ | 1.8004 | 0.97 | 167000 | 1.7451 |
385
+ | 2.2364 | 0.98 | 167500 | 1.7451 |
386
+ | 1.6716 | 0.98 | 168000 | 1.7451 |
387
+ | 2.1804 | 0.98 | 168500 | 1.7451 |
388
+ | 1.2691 | 0.99 | 169000 | 1.7451 |
389
+ | 1.8306 | 0.99 | 169500 | 1.7451 |
390
+ | 0.5662 | 0.99 | 170000 | 1.7451 |
391
+ | 1.6516 | 0.99 | 170500 | 1.7451 |
392
+ | 2.0576 | 1.0 | 171000 | 1.7451 |
393
+ | 1.3638 | 1.0 | 171500 | 1.7451 |
394
+
395
+
396
+ ### Framework versions
397
+
398
+ - Transformers 4.34.1
399
+ - Pytorch 2.0.1+cu117
400
+ - Datasets 2.14.6
401
+ - Tokenizers 0.14.1
generation_config.json CHANGED
@@ -2,5 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 50256,
4
  "eos_token_id": 50256,
5
- "transformers_version": "4.30.0"
6
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 50256,
4
  "eos_token_id": 50256,
5
+ "transformers_version": "4.34.1"
6
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d98eb14ef13e349659965a385a78b3b65dfcd83f35ab97517831b3954cbe6fd
3
  size 5292659173
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:befc96bbbd3c7e73589b0155bb0f913b7f5304bb0a9ac59ae9ebf4e9cf7c512b
3
  size 5292659173