bwang0911 commited on
Commit
1bf4d04
·
verified ·
1 Parent(s): f5374b3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:11002
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: jinaai/jina-embeddings-v2-base-en
12
+ widget:
13
+ - source_sentence: Man jumps alone on a desert road with mountains in the background.
14
+ sentences:
15
+ - A man jumps on the desert road
16
+ - A man plays a silver electric guitar.
17
+ - A man doesnt jump on the desert road
18
+ - source_sentence: Players from two teams tangle together in pursuit of a flying rugby
19
+ ball.
20
+ sentences:
21
+ - Two teams playing.
22
+ - Two teams not playing.
23
+ - Men are dancing in the street.
24
+ - source_sentence: The team won the game in the final minute.
25
+ sentences:
26
+ - In the final minute, the team won the game.
27
+ - The team lost the game in the final minute.
28
+ - For their anniversary, they took a hike through the mountains, enjoying the peace
29
+ and quiet of nature.
30
+ - source_sentence: He finished reading the book in one sitting.
31
+ sentences:
32
+ - He struggled to finish the book and took a week to read it.
33
+ - In one sitting, he finished reading the book.
34
+ - jazz players create spontaneous superior orchestra
35
+ - source_sentence: Paint preserves wood
36
+ sentences:
37
+ - Coating protects timber
38
+ - timber coating protects
39
+ - Single cell life came before complex creatures
40
+ datasets:
41
+ - bwang0911/word-orders-triplet
42
+ - jinaai/negation-dataset
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ ---
46
+
47
+ # SentenceTransformer based on jinaai/jina-embeddings-v2-base-en
48
+
49
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) on the [word_orders](https://huggingface.co/datasets/bwang0911/word-orders-triplet) and [negation_dataset](https://huggingface.co/datasets/jinaai/negation-dataset) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** Sentence Transformer
55
+ - **Base model:** [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) <!-- at revision 6e85f575bc273f1fd840a658067d0157933c83f0 -->
56
+ - **Maximum Sequence Length:** 128 tokens
57
+ - **Output Dimensionality:** 768 dimensions
58
+ - **Similarity Function:** Cosine Similarity
59
+ - **Training Datasets:**
60
+ - [word_orders](https://huggingface.co/datasets/bwang0911/word-orders-triplet)
61
+ - [negation_dataset](https://huggingface.co/datasets/jinaai/negation-dataset)
62
+ - **Language:** en
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: JinaBertModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ (2): Normalize()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("bwang0911/word-order-jina")
97
+ # Run inference
98
+ sentences = [
99
+ 'Paint preserves wood',
100
+ 'Coating protects timber',
101
+ 'timber coating protects',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Datasets
152
+
153
+ #### word_orders
154
+
155
+ * Dataset: [word_orders](https://huggingface.co/datasets/bwang0911/word-orders-triplet) at [99609ac](https://huggingface.co/datasets/bwang0911/word-orders-triplet/tree/99609ac84ce5ad127591d7e722564a064cf80a76)
156
+ * Size: 1,002 training samples
157
+ * Columns: <code>anchor</code>, <code>pos</code>, and <code>neg</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | anchor | pos | neg |
160
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
161
+ | type | string | string | string |
162
+ | details | <ul><li>min: 5 tokens</li><li>mean: 12.34 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.1 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.51 tokens</li><li>max: 24 tokens</li></ul> |
163
+ * Samples:
164
+ | anchor | pos | neg |
165
+ |:-----------------------------------------------------------|:----------------------------------------------------------|:-----------------------------------------------------------|
166
+ | <code>The river flows from the mountains to the sea</code> | <code>Water travels from mountain peaks to ocean</code> | <code>The river flows from the sea to the mountains</code> |
167
+ | <code>Train departs London for Paris</code> | <code>Railway journey from London heading to Paris</code> | <code>Train departs Paris for London</code> |
168
+ | <code>Cargo ship sails from Shanghai to Singapore</code> | <code>Maritime route Shanghai to Singapore</code> | <code>Cargo ship sails from Singapore to Shanghai</code> |
169
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
170
+ ```json
171
+ {
172
+ "scale": 20,
173
+ "similarity_fct": "cos_sim"
174
+ }
175
+ ```
176
+
177
+ #### negation_dataset
178
+
179
+ * Dataset: [negation_dataset](https://huggingface.co/datasets/jinaai/negation-dataset) at [cd02256](https://huggingface.co/datasets/jinaai/negation-dataset/tree/cd02256426cc566d176285a987e5436f1cd01382)
180
+ * Size: 10,000 training samples
181
+ * Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | anchor | entailment | negative |
184
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
185
+ | type | string | string | string |
186
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.48 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.63 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.46 tokens</li><li>max: 32 tokens</li></ul> |
187
+ * Samples:
188
+ | anchor | entailment | negative |
189
+ |:-------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|:---------------------------------------------------------|
190
+ | <code>Two young girls are playing outside in a non-urban environment.</code> | <code>Two girls are playing outside.</code> | <code>Two girls are not playing outside.</code> |
191
+ | <code>A man with a red shirt is watching another man who is standing on top of a attached cart filled to the top.</code> | <code>A man is standing on top of a cart.</code> | <code>A man is not standing on top of a cart.</code> |
192
+ | <code>A man in a blue shirt driving a Segway type vehicle.</code> | <code>A person is riding a motorized vehicle.</code> | <code>A person is not riding a motorized vehicle.</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `per_device_train_batch_size`: 128
205
+ - `warmup_ratio`: 0.1
206
+ - `fp16`: True
207
+ - `batch_sampler`: no_duplicates
208
+
209
+ #### All Hyperparameters
210
+ <details><summary>Click to expand</summary>
211
+
212
+ - `overwrite_output_dir`: False
213
+ - `do_predict`: False
214
+ - `eval_strategy`: no
215
+ - `prediction_loss_only`: True
216
+ - `per_device_train_batch_size`: 128
217
+ - `per_device_eval_batch_size`: 8
218
+ - `per_gpu_train_batch_size`: None
219
+ - `per_gpu_eval_batch_size`: None
220
+ - `gradient_accumulation_steps`: 1
221
+ - `eval_accumulation_steps`: None
222
+ - `torch_empty_cache_steps`: None
223
+ - `learning_rate`: 5e-05
224
+ - `weight_decay`: 0.0
225
+ - `adam_beta1`: 0.9
226
+ - `adam_beta2`: 0.999
227
+ - `adam_epsilon`: 1e-08
228
+ - `max_grad_norm`: 1.0
229
+ - `num_train_epochs`: 3
230
+ - `max_steps`: -1
231
+ - `lr_scheduler_type`: linear
232
+ - `lr_scheduler_kwargs`: {}
233
+ - `warmup_ratio`: 0.1
234
+ - `warmup_steps`: 0
235
+ - `log_level`: passive
236
+ - `log_level_replica`: warning
237
+ - `log_on_each_node`: True
238
+ - `logging_nan_inf_filter`: True
239
+ - `save_safetensors`: True
240
+ - `save_on_each_node`: False
241
+ - `save_only_model`: False
242
+ - `restore_callback_states_from_checkpoint`: False
243
+ - `no_cuda`: False
244
+ - `use_cpu`: False
245
+ - `use_mps_device`: False
246
+ - `seed`: 42
247
+ - `data_seed`: None
248
+ - `jit_mode_eval`: False
249
+ - `use_ipex`: False
250
+ - `bf16`: False
251
+ - `fp16`: True
252
+ - `fp16_opt_level`: O1
253
+ - `half_precision_backend`: auto
254
+ - `bf16_full_eval`: False
255
+ - `fp16_full_eval`: False
256
+ - `tf32`: None
257
+ - `local_rank`: 0
258
+ - `ddp_backend`: None
259
+ - `tpu_num_cores`: None
260
+ - `tpu_metrics_debug`: False
261
+ - `debug`: []
262
+ - `dataloader_drop_last`: False
263
+ - `dataloader_num_workers`: 0
264
+ - `dataloader_prefetch_factor`: None
265
+ - `past_index`: -1
266
+ - `disable_tqdm`: False
267
+ - `remove_unused_columns`: True
268
+ - `label_names`: None
269
+ - `load_best_model_at_end`: False
270
+ - `ignore_data_skip`: False
271
+ - `fsdp`: []
272
+ - `fsdp_min_num_params`: 0
273
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
274
+ - `fsdp_transformer_layer_cls_to_wrap`: None
275
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
276
+ - `deepspeed`: None
277
+ - `label_smoothing_factor`: 0.0
278
+ - `optim`: adamw_torch
279
+ - `optim_args`: None
280
+ - `adafactor`: False
281
+ - `group_by_length`: False
282
+ - `length_column_name`: length
283
+ - `ddp_find_unused_parameters`: None
284
+ - `ddp_bucket_cap_mb`: None
285
+ - `ddp_broadcast_buffers`: False
286
+ - `dataloader_pin_memory`: True
287
+ - `dataloader_persistent_workers`: False
288
+ - `skip_memory_metrics`: True
289
+ - `use_legacy_prediction_loop`: False
290
+ - `push_to_hub`: False
291
+ - `resume_from_checkpoint`: None
292
+ - `hub_model_id`: None
293
+ - `hub_strategy`: every_save
294
+ - `hub_private_repo`: False
295
+ - `hub_always_push`: False
296
+ - `gradient_checkpointing`: False
297
+ - `gradient_checkpointing_kwargs`: None
298
+ - `include_inputs_for_metrics`: False
299
+ - `include_for_metrics`: []
300
+ - `eval_do_concat_batches`: True
301
+ - `fp16_backend`: auto
302
+ - `push_to_hub_model_id`: None
303
+ - `push_to_hub_organization`: None
304
+ - `mp_parameters`:
305
+ - `auto_find_batch_size`: False
306
+ - `full_determinism`: False
307
+ - `torchdynamo`: None
308
+ - `ray_scope`: last
309
+ - `ddp_timeout`: 1800
310
+ - `torch_compile`: False
311
+ - `torch_compile_backend`: None
312
+ - `torch_compile_mode`: None
313
+ - `dispatch_batches`: None
314
+ - `split_batches`: None
315
+ - `include_tokens_per_second`: False
316
+ - `include_num_input_tokens_seen`: False
317
+ - `neftune_noise_alpha`: None
318
+ - `optim_target_modules`: None
319
+ - `batch_eval_metrics`: False
320
+ - `eval_on_start`: False
321
+ - `use_liger_kernel`: False
322
+ - `eval_use_gather_object`: False
323
+ - `prompts`: None
324
+ - `batch_sampler`: no_duplicates
325
+ - `multi_dataset_batch_sampler`: proportional
326
+
327
+ </details>
328
+
329
+ ### Training Logs
330
+ | Epoch | Step | Training Loss |
331
+ |:------:|:----:|:-------------:|
332
+ | 0.1149 | 10 | 2.0411 |
333
+ | 0.2299 | 20 | 1.5167 |
334
+ | 0.3448 | 30 | 0.64 |
335
+ | 0.4598 | 40 | 0.6058 |
336
+ | 0.5747 | 50 | 0.6042 |
337
+ | 0.6897 | 60 | 0.4193 |
338
+ | 0.8046 | 70 | 0.5208 |
339
+ | 0.9195 | 80 | 0.4864 |
340
+ | 1.0345 | 90 | 0.4145 |
341
+ | 1.1494 | 100 | 0.69 |
342
+ | 1.2644 | 110 | 0.9602 |
343
+ | 1.3793 | 120 | 0.2539 |
344
+ | 1.4943 | 130 | 0.2558 |
345
+ | 1.6092 | 140 | 0.2769 |
346
+ | 1.7241 | 150 | 0.2154 |
347
+ | 1.8391 | 160 | 0.293 |
348
+ | 1.9540 | 170 | 0.2598 |
349
+ | 2.0690 | 180 | 0.2113 |
350
+ | 2.1839 | 190 | 0.9366 |
351
+ | 2.2989 | 200 | 0.2121 |
352
+ | 2.4138 | 210 | 0.1486 |
353
+ | 2.5287 | 220 | 0.1765 |
354
+ | 2.6437 | 230 | 0.1438 |
355
+ | 2.7586 | 240 | 0.1589 |
356
+ | 2.8736 | 250 | 0.1869 |
357
+ | 2.9885 | 260 | 0.1682 |
358
+
359
+
360
+ ### Framework Versions
361
+ - Python: 3.10.12
362
+ - Sentence Transformers: 3.3.1
363
+ - Transformers: 4.46.0
364
+ - PyTorch: 2.5.1+cu124
365
+ - Accelerate: 1.1.1
366
+ - Datasets: 3.1.0
367
+ - Tokenizers: 0.20.1
368
+
369
+ ## Citation
370
+
371
+ ### BibTeX
372
+
373
+ #### Sentence Transformers
374
+ ```bibtex
375
+ @inproceedings{reimers-2019-sentence-bert,
376
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
377
+ author = "Reimers, Nils and Gurevych, Iryna",
378
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
379
+ month = "11",
380
+ year = "2019",
381
+ publisher = "Association for Computational Linguistics",
382
+ url = "https://arxiv.org/abs/1908.10084",
383
+ }
384
+ ```
385
+
386
+ #### MultipleNegativesRankingLoss
387
+ ```bibtex
388
+ @misc{henderson2017efficient,
389
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
390
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
391
+ year={2017},
392
+ eprint={1705.00652},
393
+ archivePrefix={arXiv},
394
+ primaryClass={cs.CL}
395
+ }
396
+ ```
397
+
398
+ <!--
399
+ ## Glossary
400
+
401
+ *Clearly define terms in order to be accessible across audiences.*
402
+ -->
403
+
404
+ <!--
405
+ ## Model Card Authors
406
+
407
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
408
+ -->
409
+
410
+ <!--
411
+ ## Model Card Contact
412
+
413
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
414
+ -->
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v2-base-en",
3
+ "architectures": [
4
+ "JinaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "attn_implementation": null,
8
+ "auto_map": {
9
+ "AutoConfig": "jinaai/jina-bert-implementation--configuration_bert.JinaBertConfig",
10
+ "AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
11
+ "AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
12
+ "AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "emb_pooler": "mean",
16
+ "feed_forward_type": "geglu",
17
+ "gradient_checkpointing": false,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.1,
20
+ "hidden_size": 768,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 3072,
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 8192,
25
+ "model_max_length": 8192,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "alibi",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.46.0",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 30528
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:526c566d86ffbda7c01a32a2762ed0b8ccec814524a3ffa953acbeb8ca401743
3
+ size 549493968
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 8192,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff