File size: 15,940 Bytes
bd4bb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#pragma once

// GGML CPU internal header

#include "ggml.h"
#include "ggml-impl.h"
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
//#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h>   // fabsf


#ifdef __cplusplus
extern "C" {
#endif

#if defined(_MSC_VER)

#define m512bh(p) p
#define m512i(p) p

#else

#define m512bh(p) (__m512bh)(p)
#define m512i(p) (__m512i)(p)

#endif

/**
 * Converts brain16 to float32.
 *
 * The bfloat16 floating point format has the following structure:
 *
 *       β”Œsign
 *       β”‚
 *       β”‚   β”Œexponent
 *       β”‚   β”‚
 *       β”‚   β”‚      β”Œmantissa
 *       β”‚   β”‚      β”‚
 *       β”‚β”Œβ”€β”€β”΄β”€β”€β”€β”β”Œβ”€β”΄β”€β”€β”€β”
 *     0b0000000000000000 brain16
 *
 * Since bf16 has the same number of exponent bits as a 32bit float,
 * encoding and decoding numbers becomes relatively straightforward.
 *
 *       β”Œsign
 *       β”‚
 *       β”‚   β”Œexponent
 *       β”‚   β”‚
 *       β”‚   β”‚      β”Œmantissa
 *       β”‚   β”‚      β”‚
 *       β”‚β”Œβ”€β”€β”΄β”€β”€β”€β”β”Œβ”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
 *     0b00000000000000000000000000000000 IEEE binary32
 *
 * For comparison, the standard fp16 format has fewer exponent bits.
 *
 *       β”Œsign
 *       β”‚
 *       β”‚  β”Œexponent
 *       β”‚  β”‚
 *       β”‚  β”‚    β”Œmantissa
 *       β”‚  β”‚    β”‚
 *       β”‚β”Œβ”€β”΄β”€β”β”Œβ”€β”΄β”€β”€β”€β”€β”€β”€β”
 *     0b0000000000000000 IEEE binary16
 *
 * @see IEEE 754-2008
 */
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
    union {
        float f;
        uint32_t i;
    } u;
    u.i = (uint32_t)h.bits << 16;
    return u.f;
}

/**
 * Converts float32 to brain16.
 *
 * This is binary identical with Google Brain float conversion.
 * Floats shall round to nearest even, and NANs shall be quiet.
 * Subnormals aren't flushed to zero, except perhaps when used.
 * This code should vectorize nicely if using modern compilers.
 */
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
    ggml_bf16_t h;
    union {
        float f;
        uint32_t i;
    } u;
    u.f = s;
    if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
        h.bits = (u.i >> 16) | 64; /* force to quiet */
        return h;
    }
    h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
    return h;
}

#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)

// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#endif

// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
#ifndef __SSE3__
#define __SSE3__
#endif
#ifndef __SSSE3__
#define __SSSE3__
#endif
#endif

#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>
#include <sys/prctl.h>
#endif

// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON)

// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>

#ifdef _MSC_VER

typedef uint16_t ggml_fp16_internal_t;

#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }

#else

typedef __fp16 ggml_fp16_internal_t;

#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }

#endif // _MSC_VER

#if !defined(__aarch64__)

// 32-bit ARM compatibility

// vaddlvq_s16
// vpaddq_s16
// vpaddq_s32
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
// vzip1_u8
// vzip2_u8

inline static int32_t vaddlvq_s16(int16x8_t v) {
    int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
    return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
}

inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
    int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
    int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
    return vcombine_s16(a0, b0);
}

inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
    int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
    int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
    return vcombine_s32(a0, b0);
}

inline static int32_t vaddvq_s32(int32x4_t v) {
    return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}

inline static float vaddvq_f32(float32x4_t v) {
    return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}

inline static float vmaxvq_f32(float32x4_t v) {
    return
        MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
            MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}

inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
    int32x4_t res;

    res[0] = roundf(vgetq_lane_f32(v, 0));
    res[1] = roundf(vgetq_lane_f32(v, 1));
    res[2] = roundf(vgetq_lane_f32(v, 2));
    res[3] = roundf(vgetq_lane_f32(v, 3));

    return res;
}

inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
    uint8x8_t res;

    res[0] = a[0]; res[1] = b[0];
    res[2] = a[1]; res[3] = b[1];
    res[4] = a[2]; res[5] = b[2];
    res[6] = a[3]; res[7] = b[3];

    return res;
}

inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
    uint8x8_t res;

    res[0] = a[4]; res[1] = b[4];
    res[2] = a[5]; res[3] = b[5];
    res[4] = a[6]; res[5] = b[6];
    res[6] = a[7]; res[7] = b[7];

    return res;
}

// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly

typedef struct ggml_int16x8x2_t {
    int16x8_t val[2];
} ggml_int16x8x2_t;

inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
    ggml_int16x8x2_t res;

    res.val[0] = vld1q_s16(ptr + 0);
    res.val[1] = vld1q_s16(ptr + 8);

    return res;
}

typedef struct ggml_uint8x16x2_t {
    uint8x16_t val[2];
} ggml_uint8x16x2_t;

inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
    ggml_uint8x16x2_t res;

    res.val[0] = vld1q_u8(ptr + 0);
    res.val[1] = vld1q_u8(ptr + 16);

    return res;
}

typedef struct ggml_uint8x16x4_t {
    uint8x16_t val[4];
} ggml_uint8x16x4_t;

inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
    ggml_uint8x16x4_t res;

    res.val[0] = vld1q_u8(ptr + 0);
    res.val[1] = vld1q_u8(ptr + 16);
    res.val[2] = vld1q_u8(ptr + 32);
    res.val[3] = vld1q_u8(ptr + 48);

    return res;
}

typedef struct ggml_int8x16x2_t {
    int8x16_t val[2];
} ggml_int8x16x2_t;

inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
    ggml_int8x16x2_t res;

    res.val[0] = vld1q_s8(ptr + 0);
    res.val[1] = vld1q_s8(ptr + 16);

    return res;
}

typedef struct ggml_int8x16x4_t {
    int8x16_t val[4];
} ggml_int8x16x4_t;

inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
    ggml_int8x16x4_t res;

    res.val[0] = vld1q_s8(ptr + 0);
    res.val[1] = vld1q_s8(ptr + 16);
    res.val[2] = vld1q_s8(ptr + 32);
    res.val[3] = vld1q_s8(ptr + 48);

    return res;
}

// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
    int8x16_t res;

    res[ 0] = a[b[ 0]];
    res[ 1] = a[b[ 1]];
    res[ 2] = a[b[ 2]];
    res[ 3] = a[b[ 3]];
    res[ 4] = a[b[ 4]];
    res[ 5] = a[b[ 5]];
    res[ 6] = a[b[ 6]];
    res[ 7] = a[b[ 7]];
    res[ 8] = a[b[ 8]];
    res[ 9] = a[b[ 9]];
    res[10] = a[b[10]];
    res[11] = a[b[11]];
    res[12] = a[b[12]];
    res[13] = a[b[13]];
    res[14] = a[b[14]];
    res[15] = a[b[15]];

    return res;
}

// NOTE: not tested
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
    uint8x16_t res;

    res[ 0] = a[b[ 0]];
    res[ 1] = a[b[ 1]];
    res[ 2] = a[b[ 2]];
    res[ 3] = a[b[ 3]];
    res[ 4] = a[b[ 4]];
    res[ 5] = a[b[ 5]];
    res[ 6] = a[b[ 6]];
    res[ 7] = a[b[ 7]];
    res[ 8] = a[b[ 8]];
    res[ 9] = a[b[ 9]];
    res[10] = a[b[10]];
    res[11] = a[b[11]];
    res[12] = a[b[12]];
    res[13] = a[b[13]];
    res[14] = a[b[14]];
    res[15] = a[b[15]];

    return res;
}

#else

#define ggml_int16x8x2_t  int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t  int8x16x2_t
#define ggml_int8x16x4_t  int8x16x4_t

#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2  vld1q_u8_x2
#define ggml_vld1q_u8_x4  vld1q_u8_x4
#define ggml_vld1q_s8_x2  vld1q_s8_x2
#define ggml_vld1q_s8_x4  vld1q_s8_x4
#define ggml_vqtbl1q_s8   vqtbl1q_s8
#define ggml_vqtbl1q_u8   vqtbl1q_u8

#endif // !defined(__aarch64__)

#if !defined(__ARM_FEATURE_DOTPROD)

inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
    const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
    const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));

    return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}

#else

#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)

#endif // !defined(__ARM_FEATURE_DOTPROD)

#endif // defined(__ARM_NEON)

#if defined(__ARM_NEON) && !defined(_MSC_VER)

#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)

#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)

static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
    ggml_fp16_internal_t tmp;
    memcpy(&tmp, &h, sizeof(ggml_fp16_t));
    return (float)tmp;
}

static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
    ggml_fp16_t res;
    ggml_fp16_internal_t tmp = f;
    memcpy(&res, &tmp, sizeof(ggml_fp16_t));
    return res;
}

#else

#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif

#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif

#if defined(__loongarch64)
#if defined(__loongarch_asx)
#include <lasxintrin.h>
#endif
#if defined(__loongarch_sx)
#include <lsxintrin.h>
#endif
#endif

#if defined(__loongarch_asx)

typedef union {
    int32_t i;
    float f;
} ft_union;

/* float type data load instructions */
static __m128 __lsx_vreplfr2vr_s(float val) {
    ft_union fi_tmpval = {.f = val};
    return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
}

static __m256 __lasx_xvreplfr2vr_s(float val) {
    ft_union fi_tmpval = {.f = val};
    return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
}
#endif

#ifdef __F16C__

#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif

#elif defined(__POWER9_VECTOR__)

#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)

static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
    register float f;
    register double d;
    __asm__(
        "mtfprd %0,%2\n"
        "xscvhpdp %0,%0\n"
        "frsp %1,%0\n" :
        /* temp */ "=d"(d),
        /* out */  "=f"(f):
        /* in */   "r"(h));
    return f;
}

static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
    register double d;
    register ggml_fp16_t r;
    __asm__( /* xscvdphp can work on double or single precision */
        "xscvdphp %0,%2\n"
        "mffprd %1,%0\n" :
        /* temp */ "=d"(d),
        /* out */  "=r"(r):
        /* in */   "f"(f));
    return r;
}

#else

// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16

static inline float fp32_from_bits(uint32_t w) {
    union {
        uint32_t as_bits;
        float as_value;
    } fp32;
    fp32.as_bits = w;
    return fp32.as_value;
}

static inline uint32_t fp32_to_bits(float f) {
    union {
        float as_value;
        uint32_t as_bits;
    } fp32;
    fp32.as_value = f;
    return fp32.as_bits;
}

static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
    const uint32_t w = (uint32_t) h << 16;
    const uint32_t sign = w & UINT32_C(0x80000000);
    const uint32_t two_w = w + w;

    const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
    const float exp_scale = 0x1.0p-112f;
#else
    const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
    const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;

    const uint32_t magic_mask = UINT32_C(126) << 23;
    const float magic_bias = 0.5f;
    const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;

    const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
    const uint32_t result = sign |
        (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
    return fp32_from_bits(result);
}

static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
    const float scale_to_inf = 0x1.0p+112f;
    const float scale_to_zero = 0x1.0p-110f;
#else
    const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
    const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
    float base = (fabsf(f) * scale_to_inf) * scale_to_zero;

    const uint32_t w = fp32_to_bits(f);
    const uint32_t shl1_w = w + w;
    const uint32_t sign = w & UINT32_C(0x80000000);
    uint32_t bias = shl1_w & UINT32_C(0xFF000000);
    if (bias < UINT32_C(0x71000000)) {
        bias = UINT32_C(0x71000000);
    }

    base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
    const uint32_t bits = fp32_to_bits(base);
    const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
    const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
    const uint32_t nonsign = exp_bits + mantissa_bits;
    return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}

#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)

#endif // __F16C__

#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)

#ifdef __ARM_FEATURE_SVE
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE

// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];

// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
    uint16_t s;
    memcpy(&s, &f, sizeof(uint16_t));
    return ggml_table_f32_f16[s];
}

#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif

#if !defined(GGML_FP32_TO_FP16)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif

#ifdef __cplusplus
}
#endif