|
#define _USE_MATH_DEFINES |
|
|
|
#include "common.h" |
|
|
|
|
|
|
|
#define DR_WAV_IMPLEMENTATION |
|
#include "dr_wav.h" |
|
|
|
#include <cmath> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <regex> |
|
#include <locale> |
|
#include <codecvt> |
|
#include <sstream> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
#ifdef _WIN32 |
|
#include <fcntl.h> |
|
#include <io.h> |
|
#endif |
|
|
|
#ifdef WHISPER_FFMPEG |
|
|
|
extern bool ffmpeg_decode_audio(const std::string & ifname, std::vector<uint8_t> & wav_data); |
|
#endif |
|
|
|
|
|
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) { |
|
if (i + 1 < argc && argv[i + 1][0] != '-') { |
|
return argv[++i]; |
|
} else { |
|
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str()); |
|
gpt_print_usage(argc, argv, params); |
|
exit(0); |
|
} |
|
} |
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { |
|
for (int i = 1; i < argc; i++) { |
|
std::string arg = argv[i]; |
|
|
|
if (arg == "-s" || arg == "--seed") { |
|
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-t" || arg == "--threads") { |
|
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-p" || arg == "--prompt") { |
|
params.prompt = get_next_arg(i, argc, argv, arg, params); |
|
} else if (arg == "-n" || arg == "--n_predict") { |
|
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-np" || arg == "--n_parallel") { |
|
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--top_k") { |
|
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--top_p") { |
|
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--temp") { |
|
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--repeat-last-n") { |
|
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--repeat-penalty") { |
|
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-b" || arg == "--batch_size") { |
|
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-c" || arg == "--context") { |
|
params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") { |
|
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "--ignore-eos") { |
|
params.ignore_eos = true; |
|
} else if (arg == "-m" || arg == "--model") { |
|
params.model = get_next_arg(i, argc, argv, arg, params); |
|
} else if (arg == "-i" || arg == "--interactive") { |
|
params.interactive = true; |
|
} else if (arg == "-ip" || arg == "--interactive-port") { |
|
params.interactive = true; |
|
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params)); |
|
} else if (arg == "-h" || arg == "--help") { |
|
gpt_print_usage(argc, argv, params); |
|
exit(0); |
|
} else if (arg == "-f" || arg == "--file") { |
|
get_next_arg(i, argc, argv, arg, params); |
|
std::ifstream file(argv[i]); |
|
if (!file) { |
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); |
|
break; |
|
} |
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); |
|
if (params.prompt.back() == '\n') { |
|
params.prompt.pop_back(); |
|
} |
|
} else if (arg == "-tt" || arg == "--token_test") { |
|
params.token_test = get_next_arg(i, argc, argv, arg, params); |
|
} |
|
else { |
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); |
|
gpt_print_usage(argc, argv, params); |
|
exit(0); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void gpt_print_usage(int , char ** argv, const gpt_params & params) { |
|
fprintf(stderr, "usage: %s [options]\n", argv[0]); |
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "options:\n"); |
|
fprintf(stderr, " -h, --help show this help message and exit\n"); |
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); |
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); |
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); |
|
fprintf(stderr, " prompt to start generation with (default: random)\n"); |
|
fprintf(stderr, " -f FNAME, --file FNAME\n"); |
|
fprintf(stderr, " load prompt from a file\n"); |
|
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n"); |
|
fprintf(stderr, " test tokenization\n"); |
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); |
|
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); |
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); |
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp); |
|
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n); |
|
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty); |
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); |
|
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx); |
|
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n"); |
|
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers); |
|
fprintf(stderr, " -m FNAME, --model FNAME\n"); |
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); |
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng) { |
|
const int r = rng() % 10; |
|
switch (r) { |
|
case 0: return "So"; |
|
case 1: return "Once upon a time"; |
|
case 2: return "When"; |
|
case 3: return "The"; |
|
case 4: return "After"; |
|
case 5: return "If"; |
|
case 6: return "import"; |
|
case 7: return "He"; |
|
case 8: return "She"; |
|
case 9: return "They"; |
|
} |
|
|
|
return "The"; |
|
} |
|
|
|
std::string trim(const std::string & s) { |
|
std::regex e("^\\s+|\\s+$"); |
|
return std::regex_replace(s, e, ""); |
|
} |
|
|
|
std::string replace(const std::string & s, const std::string & from, const std::string & to) { |
|
std::string result = s; |
|
size_t pos = 0; |
|
while ((pos = result.find(from, pos)) != std::string::npos) { |
|
result.replace(pos, from.length(), to); |
|
pos += to.length(); |
|
} |
|
return result; |
|
} |
|
|
|
void gpt_vocab::add_special_token(const std::string & token) { |
|
special_tokens.push_back(token); |
|
} |
|
|
|
std::map<std::string, int32_t> json_parse(const std::string & fname) { |
|
std::map<std::string, int32_t> result; |
|
|
|
|
|
std::string json; |
|
{ |
|
std::ifstream ifs(fname); |
|
if (!ifs) { |
|
fprintf(stderr, "Failed to open %s\n", fname.c_str()); |
|
exit(1); |
|
} |
|
|
|
json = std::string((std::istreambuf_iterator<char>(ifs)), |
|
(std::istreambuf_iterator<char>())); |
|
} |
|
|
|
if (json[0] != '{') { |
|
return result; |
|
} |
|
|
|
|
|
{ |
|
bool has_key = false; |
|
bool in_token = false; |
|
|
|
std::string str_key = ""; |
|
std::string str_val = ""; |
|
|
|
int n = json.size(); |
|
for (int i = 1; i < n; ++i) { |
|
if (!in_token) { |
|
if (json[i] == ' ') continue; |
|
if (json[i] == '"') { |
|
in_token = true; |
|
continue; |
|
} |
|
} else { |
|
if (json[i] == '\\' && i+1 < n) { |
|
if (has_key == false) { |
|
str_key += json[i]; |
|
} else { |
|
str_val += json[i]; |
|
} |
|
++i; |
|
} else if (json[i] == '"') { |
|
if (has_key == false) { |
|
has_key = true; |
|
++i; |
|
while (json[i] == ' ') ++i; |
|
++i; |
|
while (json[i] == ' ') ++i; |
|
if (json[i] != '\"') { |
|
while (json[i] != ',' && json[i] != '}') { |
|
str_val += json[i++]; |
|
} |
|
has_key = false; |
|
} else { |
|
in_token = true; |
|
continue; |
|
} |
|
} else { |
|
has_key = false; |
|
} |
|
|
|
str_key = ::replace(str_key, "\\u0120", " " ); |
|
str_key = ::replace(str_key, "\\u010a", "\n"); |
|
str_key = ::replace(str_key, "\\\"", "\""); |
|
|
|
try { |
|
result[str_key] = std::stoi(str_val); |
|
} catch (...) { |
|
|
|
|
|
} |
|
str_key = ""; |
|
str_val = ""; |
|
in_token = false; |
|
continue; |
|
} |
|
if (has_key == false) { |
|
str_key += json[i]; |
|
} else { |
|
str_val += json[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
std::string convert_to_utf8(const std::wstring & input) { |
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; |
|
return converter.to_bytes(input); |
|
} |
|
|
|
|
|
std::wstring convert_to_wstring(const std::string & input) { |
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; |
|
return converter.from_bytes(input); |
|
} |
|
|
|
void gpt_split_words(std::string str, std::vector<std::string>& words) { |
|
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; |
|
const std::regex re(pattern); |
|
std::smatch m; |
|
|
|
while (std::regex_search(str, m, re)) { |
|
for (auto x : m) { |
|
words.push_back(x); |
|
} |
|
str = m.suffix(); |
|
} |
|
} |
|
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) { |
|
std::vector<std::string> words; |
|
|
|
|
|
{ |
|
std::string str = text; |
|
|
|
|
|
if (!vocab.special_tokens.empty()) { |
|
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])"); |
|
std::string special_tokens_subpattern; |
|
for (const auto & token : vocab.special_tokens) { |
|
if (!special_tokens_subpattern.empty()) { |
|
special_tokens_subpattern += "|"; |
|
} |
|
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)"); |
|
} |
|
|
|
std::regex re(special_tokens_subpattern); |
|
std::smatch m; |
|
|
|
while (std::regex_search(str, m, re)) { |
|
|
|
gpt_split_words(m.prefix(), words); |
|
|
|
for (auto x : m) { |
|
words.push_back(x); |
|
} |
|
str = m.suffix(); |
|
} |
|
|
|
} |
|
|
|
gpt_split_words(str, words); |
|
} |
|
|
|
|
|
std::vector<gpt_vocab::id> tokens; |
|
for (const auto & word : words) { |
|
for (int i = 0; i < (int) word.size(); ){ |
|
for (int j = word.size() - 1; j >= i; j--){ |
|
auto cand = word.substr(i, j-i+1); |
|
auto it = vocab.token_to_id.find(cand); |
|
if (it != vocab.token_to_id.end()){ |
|
tokens.push_back(it->second); |
|
i = j + 1; |
|
break; |
|
} |
|
else if (j == i){ |
|
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data()); |
|
i++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return tokens; |
|
} |
|
|
|
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) { |
|
std::vector<gpt_vocab::id> output; |
|
std::stringstream ss(input); |
|
std::string token; |
|
|
|
while (std::getline(ss, token, delimiter)) { |
|
output.push_back(std::stoi(token)); |
|
} |
|
|
|
return output; |
|
} |
|
|
|
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){ |
|
if (fpath_test.empty()){ |
|
fprintf(stderr, "%s : No test file found.\n", __func__); |
|
return std::map<std::string, std::vector<gpt_vocab::id>>(); |
|
} |
|
|
|
std::map<std::string, std::vector<gpt_vocab::id>> tests; |
|
|
|
auto fin = std::ifstream(fpath_test, std::ios_base::in); |
|
const char * delimeter = " => "; |
|
const char del_tok = ','; |
|
std::string line; |
|
while (std::getline(fin, line)) { |
|
size_t delimiterPos = line.find(delimeter); |
|
if (delimiterPos != std::string::npos) { |
|
std::string text = line.substr(0, delimiterPos); |
|
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter)); |
|
tests[text] = parse_tokens_from_string(s_tokens, del_tok); |
|
} |
|
} |
|
return tests; |
|
} |
|
|
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){ |
|
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test); |
|
|
|
size_t n_fails = 0; |
|
|
|
for (const auto & test : tests) { |
|
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first); |
|
|
|
if (tokens != test.second){ |
|
n_fails++; |
|
|
|
|
|
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str()); |
|
fprintf(stderr, "%s : tokens in hf: ", __func__); |
|
for (const auto & t : test.second) { |
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t); |
|
} |
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "%s : tokens in ggml: ", __func__); |
|
for (const auto & t : tokens) { |
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t); |
|
} |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
|
|
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size()); |
|
} |
|
|
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) { |
|
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str()); |
|
|
|
vocab.token_to_id = ::json_parse(fname); |
|
|
|
for (const auto & kv : vocab.token_to_id) { |
|
vocab.id_to_token[kv.second] = kv.first; |
|
} |
|
|
|
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size()); |
|
|
|
|
|
|
|
|
|
|
|
|
|
return true; |
|
} |
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p( |
|
const gpt_vocab & vocab, |
|
const float * logits, |
|
int top_k, |
|
double top_p, |
|
double temp, |
|
std::mt19937 & rng) { |
|
int n_logits = vocab.id_to_token.size(); |
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id; |
|
logits_id.reserve(n_logits); |
|
|
|
{ |
|
const double scale = 1.0/temp; |
|
for (int i = 0; i < n_logits; ++i) { |
|
logits_id.push_back(std::make_pair(logits[i]*scale, i)); |
|
} |
|
} |
|
|
|
|
|
std::partial_sort( |
|
logits_id.begin(), |
|
logits_id.begin() + top_k, logits_id.end(), |
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) { |
|
return a.first > b.first; |
|
}); |
|
|
|
logits_id.resize(top_k); |
|
|
|
double maxl = -INFINITY; |
|
for (const auto & kv : logits_id) { |
|
maxl = std::max(maxl, kv.first); |
|
} |
|
|
|
|
|
std::vector<double> probs; |
|
probs.reserve(logits_id.size()); |
|
|
|
double sum = 0.0; |
|
for (const auto & kv : logits_id) { |
|
double p = exp(kv.first - maxl); |
|
probs.push_back(p); |
|
sum += p; |
|
} |
|
|
|
|
|
for (auto & p : probs) { |
|
p /= sum; |
|
} |
|
|
|
if (top_p < 1.0f) { |
|
double cumsum = 0.0f; |
|
for (int i = 0; i < top_k; i++) { |
|
cumsum += probs[i]; |
|
if (cumsum >= top_p) { |
|
top_k = i + 1; |
|
probs.resize(top_k); |
|
logits_id.resize(top_k); |
|
break; |
|
} |
|
} |
|
|
|
cumsum = 1.0/cumsum; |
|
for (int i = 0; i < (int) probs.size(); i++) { |
|
probs[i] *= cumsum; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end()); |
|
int idx = dist(rng); |
|
|
|
return logits_id[idx].second; |
|
} |
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p_repeat( |
|
const gpt_vocab & vocab, |
|
const float * logits, |
|
const int32_t * last_n_tokens_data, |
|
size_t last_n_tokens_data_size, |
|
int top_k, |
|
double top_p, |
|
double temp, |
|
int repeat_last_n, |
|
float repeat_penalty, |
|
std::mt19937 & rng) { |
|
|
|
int n_logits = vocab.id_to_token.size(); |
|
|
|
const auto * plogits = logits; |
|
|
|
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size); |
|
|
|
if (temp <= 0) { |
|
|
|
float max_logit = plogits[0]; |
|
gpt_vocab::id max_id = 0; |
|
|
|
for (int i = 1; i < n_logits; ++i) { |
|
if (plogits[i] > max_logit) { |
|
max_logit = plogits[i]; |
|
max_id = i; |
|
} |
|
} |
|
return max_id; |
|
} |
|
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id; |
|
logits_id.reserve(n_logits); |
|
|
|
{ |
|
const float scale = 1.0f/temp; |
|
for (int i = 0; i < n_logits; ++i) { |
|
|
|
|
|
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) { |
|
|
|
if (plogits[i] < 0.0f) { |
|
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); |
|
} else { |
|
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); |
|
} |
|
} else { |
|
logits_id.push_back(std::make_pair(plogits[i]*scale, i)); |
|
} |
|
} |
|
} |
|
|
|
|
|
std::partial_sort( |
|
logits_id.begin(), |
|
logits_id.begin() + top_k, logits_id.end(), |
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) { |
|
return a.first > b.first; |
|
}); |
|
|
|
logits_id.resize(top_k); |
|
|
|
double maxl = -INFINITY; |
|
for (const auto & kv : logits_id) { |
|
maxl = std::max(maxl, kv.first); |
|
} |
|
|
|
|
|
std::vector<double> probs; |
|
probs.reserve(logits_id.size()); |
|
|
|
double sum = 0.0; |
|
for (const auto & kv : logits_id) { |
|
double p = exp(kv.first - maxl); |
|
probs.push_back(p); |
|
sum += p; |
|
} |
|
|
|
|
|
for (auto & p : probs) { |
|
p /= sum; |
|
} |
|
|
|
if (top_p < 1.0f) { |
|
double cumsum = 0.0f; |
|
for (int i = 0; i < top_k; i++) { |
|
cumsum += probs[i]; |
|
if (cumsum >= top_p) { |
|
top_k = i + 1; |
|
probs.resize(top_k); |
|
logits_id.resize(top_k); |
|
break; |
|
} |
|
} |
|
|
|
cumsum = 1.0/cumsum; |
|
for (int i = 0; i < (int) probs.size(); i++) { |
|
probs[i] *= cumsum; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end()); |
|
int idx = dist(rng); |
|
|
|
return logits_id[idx].second; |
|
|
|
} |
|
|
|
bool is_wav_buffer(const std::string buf) { |
|
|
|
|
|
if (buf.size() < 12 || buf.substr(0, 4) != "RIFF" || buf.substr(8, 4) != "WAVE") { |
|
return false; |
|
} |
|
|
|
uint32_t chunk_size = *reinterpret_cast<const uint32_t*>(buf.data() + 4); |
|
if (chunk_size + 8 != buf.size()) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) { |
|
drwav wav; |
|
std::vector<uint8_t> wav_data; |
|
|
|
if (fname == "-") { |
|
{ |
|
#ifdef _WIN32 |
|
_setmode(_fileno(stdin), _O_BINARY); |
|
#endif |
|
|
|
uint8_t buf[1024]; |
|
while (true) |
|
{ |
|
const size_t n = fread(buf, 1, sizeof(buf), stdin); |
|
if (n == 0) { |
|
break; |
|
} |
|
wav_data.insert(wav_data.end(), buf, buf + n); |
|
} |
|
} |
|
|
|
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) { |
|
fprintf(stderr, "error: failed to open WAV file from stdin\n"); |
|
return false; |
|
} |
|
|
|
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size()); |
|
} |
|
else if (is_wav_buffer(fname)) { |
|
if (drwav_init_memory(&wav, fname.c_str(), fname.size(), nullptr) == false) { |
|
fprintf(stderr, "error: failed to open WAV file from fname buffer\n"); |
|
return false; |
|
} |
|
} |
|
else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) { |
|
#if defined(WHISPER_FFMPEG) |
|
if (ffmpeg_decode_audio(fname, wav_data) != 0) { |
|
fprintf(stderr, "error: failed to ffmpeg decode '%s' \n", fname.c_str()); |
|
return false; |
|
} |
|
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) { |
|
fprintf(stderr, "error: failed to read wav data as wav \n"); |
|
return false; |
|
} |
|
#else |
|
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str()); |
|
return false; |
|
#endif |
|
} |
|
|
|
if (wav.channels != 1 && wav.channels != 2) { |
|
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str()); |
|
drwav_uninit(&wav); |
|
return false; |
|
} |
|
|
|
if (stereo && wav.channels != 2) { |
|
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str()); |
|
drwav_uninit(&wav); |
|
return false; |
|
} |
|
|
|
if (wav.sampleRate != COMMON_SAMPLE_RATE) { |
|
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000); |
|
drwav_uninit(&wav); |
|
return false; |
|
} |
|
|
|
if (wav.bitsPerSample != 16) { |
|
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str()); |
|
drwav_uninit(&wav); |
|
return false; |
|
} |
|
|
|
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8); |
|
|
|
std::vector<int16_t> pcm16; |
|
pcm16.resize(n*wav.channels); |
|
drwav_read_pcm_frames_s16(&wav, n, pcm16.data()); |
|
drwav_uninit(&wav); |
|
|
|
|
|
pcmf32.resize(n); |
|
if (wav.channels == 1) { |
|
for (uint64_t i = 0; i < n; i++) { |
|
pcmf32[i] = float(pcm16[i])/32768.0f; |
|
} |
|
} else { |
|
for (uint64_t i = 0; i < n; i++) { |
|
pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f; |
|
} |
|
} |
|
|
|
if (stereo) { |
|
|
|
pcmf32s.resize(2); |
|
|
|
pcmf32s[0].resize(n); |
|
pcmf32s[1].resize(n); |
|
for (uint64_t i = 0; i < n; i++) { |
|
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f; |
|
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) { |
|
const float rc = 1.0f / (2.0f * M_PI * cutoff); |
|
const float dt = 1.0f / sample_rate; |
|
const float alpha = dt / (rc + dt); |
|
|
|
float y = data[0]; |
|
|
|
for (size_t i = 1; i < data.size(); i++) { |
|
y = alpha * (y + data[i] - data[i - 1]); |
|
data[i] = y; |
|
} |
|
} |
|
|
|
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { |
|
const int n_samples = pcmf32.size(); |
|
const int n_samples_last = (sample_rate * last_ms) / 1000; |
|
|
|
if (n_samples_last >= n_samples) { |
|
|
|
return false; |
|
} |
|
|
|
if (freq_thold > 0.0f) { |
|
high_pass_filter(pcmf32, freq_thold, sample_rate); |
|
} |
|
|
|
float energy_all = 0.0f; |
|
float energy_last = 0.0f; |
|
|
|
for (int i = 0; i < n_samples; i++) { |
|
energy_all += fabsf(pcmf32[i]); |
|
|
|
if (i >= n_samples - n_samples_last) { |
|
energy_last += fabsf(pcmf32[i]); |
|
} |
|
} |
|
|
|
energy_all /= n_samples; |
|
energy_last /= n_samples_last; |
|
|
|
if (verbose) { |
|
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); |
|
} |
|
|
|
if (energy_last > vad_thold*energy_all) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
float similarity(const std::string & s0, const std::string & s1) { |
|
const size_t len0 = s0.size() + 1; |
|
const size_t len1 = s1.size() + 1; |
|
|
|
std::vector<int> col(len1, 0); |
|
std::vector<int> prevCol(len1, 0); |
|
|
|
for (size_t i = 0; i < len1; i++) { |
|
prevCol[i] = i; |
|
} |
|
|
|
for (size_t i = 0; i < len0; i++) { |
|
col[0] = i; |
|
for (size_t j = 1; j < len1; j++) { |
|
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1)); |
|
} |
|
col.swap(prevCol); |
|
} |
|
|
|
const float dist = prevCol[len1 - 1]; |
|
|
|
return 1.0f - (dist / std::max(s0.size(), s1.size())); |
|
} |
|
|
|
bool sam_params_parse(int argc, char ** argv, sam_params & params) { |
|
for (int i = 1; i < argc; i++) { |
|
std::string arg = argv[i]; |
|
|
|
if (arg == "-s" || arg == "--seed") { |
|
params.seed = std::stoi(argv[++i]); |
|
} else if (arg == "-t" || arg == "--threads") { |
|
params.n_threads = std::stoi(argv[++i]); |
|
} else if (arg == "-m" || arg == "--model") { |
|
params.model = argv[++i]; |
|
} else if (arg == "-i" || arg == "--inp") { |
|
params.fname_inp = argv[++i]; |
|
} else if (arg == "-o" || arg == "--out") { |
|
params.fname_out = argv[++i]; |
|
} else if (arg == "-h" || arg == "--help") { |
|
sam_print_usage(argc, argv, params); |
|
exit(0); |
|
} else { |
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); |
|
sam_print_usage(argc, argv, params); |
|
exit(0); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void sam_print_usage(int , char ** argv, const sam_params & params) { |
|
fprintf(stderr, "usage: %s [options]\n", argv[0]); |
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "options:\n"); |
|
fprintf(stderr, " -h, --help show this help message and exit\n"); |
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); |
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); |
|
fprintf(stderr, " -m FNAME, --model FNAME\n"); |
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); |
|
fprintf(stderr, " -i FNAME, --inp FNAME\n"); |
|
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str()); |
|
fprintf(stderr, " -o FNAME, --out FNAME\n"); |
|
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str()); |
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
|
|
|
|
std::string to_timestamp(int64_t t, bool comma) { |
|
int64_t msec = t * 10; |
|
int64_t hr = msec / (1000 * 60 * 60); |
|
msec = msec - hr * (1000 * 60 * 60); |
|
int64_t min = msec / (1000 * 60); |
|
msec = msec - min * (1000 * 60); |
|
int64_t sec = msec / 1000; |
|
msec = msec - sec * 1000; |
|
|
|
char buf[32]; |
|
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); |
|
|
|
return std::string(buf); |
|
} |
|
|
|
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) { |
|
return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100))); |
|
} |
|
|
|
bool is_file_exist(const char *fileName) |
|
{ |
|
std::ifstream infile(fileName); |
|
return infile.good(); |
|
} |
|
|
|
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id) |
|
{ |
|
std::ofstream speak_file(path.c_str()); |
|
if (speak_file.fail()) { |
|
fprintf(stderr, "%s: failed to open speak_file\n", __func__); |
|
return false; |
|
} else { |
|
speak_file.write(text.c_str(), text.size()); |
|
speak_file.close(); |
|
int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str()); |
|
if (ret != 0) { |
|
fprintf(stderr, "%s: failed to speak\n", __func__); |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|