|
#include "ggml.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <ctime>
|
|
#include <random>
|
|
#include <regex>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267)
|
|
#endif
|
|
|
|
|
|
struct gpt_hparams {
|
|
int32_t n_vocab = 50257;
|
|
int32_t n_embd = 1024;
|
|
int32_t n_head = 16;
|
|
int32_t n_layer = 24;
|
|
int32_t ftype = 1;
|
|
float eps = 1e-5f;
|
|
|
|
int32_t seed = -1;
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t n_predict = 200;
|
|
int32_t n_parallel = 1;
|
|
int32_t n_batch = 32;
|
|
int32_t n_ctx = 1024;
|
|
int32_t n_gpu_layers = 0;
|
|
|
|
bool ignore_eos = false;
|
|
|
|
|
|
int32_t top_k = 40;
|
|
float top_p = 0.9f;
|
|
float temp = 0.9f;
|
|
int32_t repeat_last_n = 64;
|
|
float repeat_penalty = 1.00f;
|
|
|
|
std::string model = "ggml-model-gpt-2-774M.bin";
|
|
std::string prompt = "";
|
|
std::string token_test = "";
|
|
|
|
bool interactive = false;
|
|
int32_t interactive_port = -1;
|
|
};
|
|
|
|
struct gpt_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
std::vector<std::string> special_tokens;
|
|
|
|
void add_special_token(const std::string & token);
|
|
};
|
|
|
|
struct gpt_layer {
|
|
|
|
struct ggml_tensor * ln_1_g;
|
|
struct ggml_tensor * ln_1_b;
|
|
|
|
struct ggml_tensor * ln_2_g;
|
|
struct ggml_tensor * ln_2_b;
|
|
|
|
|
|
struct ggml_tensor * c_attn_attn_w;
|
|
struct ggml_tensor * c_attn_attn_b;
|
|
|
|
struct ggml_tensor * c_attn_proj_w;
|
|
struct ggml_tensor * c_attn_proj_b;
|
|
|
|
|
|
struct ggml_tensor * c_mlp_fc_w;
|
|
struct ggml_tensor * c_mlp_fc_b;
|
|
|
|
struct ggml_tensor * c_mlp_proj_w;
|
|
struct ggml_tensor * c_mlp_proj_b;
|
|
};
|
|
|
|
struct gpt_model {
|
|
gpt_hparams hparams;
|
|
|
|
|
|
struct ggml_tensor * ln_f_g;
|
|
struct ggml_tensor * ln_f_b;
|
|
|
|
struct ggml_tensor * wte;
|
|
struct ggml_tensor * wpe;
|
|
struct ggml_tensor * lm_head;
|
|
|
|
std::vector<gpt_layer> layers;
|
|
|
|
|
|
struct ggml_tensor * memory_k;
|
|
struct ggml_tensor * memory_v;
|
|
|
|
|
|
struct ggml_context * ctx_w;
|
|
std::map<std::string, struct ggml_tensor *> tensors;
|
|
};
|
|
|
|
|
|
bool gpt_model_load(const std::string & fname, gpt_model & model, gpt_vocab & vocab) {
|
|
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
|
|
|
auto fin = std::ifstream(fname, std::ios::binary);
|
|
if (!fin) {
|
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
|
|
{
|
|
uint32_t magic;
|
|
fin.read((char *) &magic, sizeof(magic));
|
|
if (magic != GGML_FILE_MAGIC) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
|
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
|
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
|
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
|
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
|
|
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
|
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
|
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
|
printf("%s: qntvr = %d\n", __func__, qntvr);
|
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
|
}
|
|
|
|
|
|
{
|
|
int32_t n_vocab = 0;
|
|
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
|
|
|
if (n_vocab != model.hparams.n_vocab) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
|
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
|
return false;
|
|
}
|
|
|
|
std::string word;
|
|
std::vector<char> buf(128);
|
|
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
uint32_t len;
|
|
fin.read((char *) &len, sizeof(len));
|
|
|
|
buf.resize(len);
|
|
fin.read((char *) buf.data(), len);
|
|
word.assign(buf.data(), len);
|
|
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
|
if (wtype == GGML_TYPE_COUNT) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
|
__func__, fname.c_str(), model.hparams.ftype);
|
|
return false;
|
|
}
|
|
|
|
auto & ctx = model.ctx_w;
|
|
|
|
size_t ctx_size = 0;
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd);
|
|
ctx_size += ggml_row_size(GGML_TYPE_F32, n_embd);
|
|
|
|
ctx_size += ggml_row_size(wtype, n_vocab*n_embd);
|
|
ctx_size += ggml_row_size(GGML_TYPE_F32, n_ctx*n_embd);
|
|
ctx_size += ggml_row_size(wtype, n_vocab*n_embd);
|
|
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd));
|
|
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd));
|
|
|
|
ctx_size += n_layer*(ggml_row_size(wtype, 3*n_embd*n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 3*n_embd));
|
|
|
|
ctx_size += n_layer*(ggml_row_size(wtype, n_embd*n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, n_embd));
|
|
|
|
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd));
|
|
|
|
ctx_size += n_layer*(ggml_row_size(wtype, 4*n_embd*n_embd));
|
|
ctx_size += n_layer*(ggml_row_size(GGML_TYPE_F32, 4*n_embd));
|
|
|
|
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd);
|
|
ctx_size += n_ctx*n_layer*ggml_row_size(GGML_TYPE_F32, n_embd);
|
|
|
|
ctx_size += (6 + 12*n_layer)*512;
|
|
|
|
printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
}
|
|
|
|
|
|
{
|
|
struct ggml_init_params params = {
|
|
ctx_size,
|
|
NULL,
|
|
false,
|
|
};
|
|
|
|
model.ctx_w = ggml_init(params);
|
|
if (!model.ctx_w) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
model.layers.resize(n_layer);
|
|
|
|
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
|
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
|
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
|
|
|
|
|
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
|
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
|
|
|
model.tensors["model/wte"] = model.wte;
|
|
model.tensors["model/wpe"] = model.wpe;
|
|
model.tensors["model/lm_head"] = model.lm_head;
|
|
|
|
for (int i = 0; i < n_layer; ++i) {
|
|
auto & layer = model.layers[i];
|
|
|
|
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
|
|
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
|
|
|
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
|
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
|
|
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
|
|
|
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
|
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
|
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
|
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
|
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
|
|
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
|
}
|
|
}
|
|
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
|
|
const int n_mem = n_layer*n_ctx;
|
|
const int n_elements = n_embd*n_mem;
|
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
|
|
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
|
|
|
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
|
}
|
|
|
|
|
|
{
|
|
size_t total_size = 0;
|
|
|
|
bool has_lm_head = false;
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ttype;
|
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
|
|
|
if (fin.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[2] = { 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
fin.read(&name[0], length);
|
|
|
|
if (model.tensors.find(name) == model.tensors.end()) {
|
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
|
|
return false;
|
|
}
|
|
|
|
auto tensor = model.tensors[name];
|
|
if (ggml_nelements(tensor) != nelements) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
|
|
return false;
|
|
}
|
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
__func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
|
return false;
|
|
}
|
|
|
|
|
|
if (0) {
|
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
|
}
|
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
|
|
|
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
__func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
|
|
return false;
|
|
}
|
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
|
|
|
|
if (name == "model/wte" && has_lm_head == false) {
|
|
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
|
|
}
|
|
|
|
if (name == "model/lm_head") {
|
|
has_lm_head = true;
|
|
}
|
|
|
|
total_size += ggml_nbytes(tensor);
|
|
}
|
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
|
}
|
|
|
|
fin.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
void gpt_split_words(std::string str, std::vector<std::string>& words) {
|
|
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
|
const std::regex re(pattern);
|
|
std::smatch m;
|
|
|
|
while (std::regex_search(str, m, re)) {
|
|
for (auto x : m) {
|
|
words.push_back(x);
|
|
}
|
|
str = m.suffix();
|
|
}
|
|
}
|
|
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
|
std::vector<std::string> words;
|
|
|
|
|
|
{
|
|
std::string str = text;
|
|
|
|
|
|
if (!vocab.special_tokens.empty()) {
|
|
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
|
|
std::string special_tokens_subpattern;
|
|
for (const auto & token : vocab.special_tokens) {
|
|
if (!special_tokens_subpattern.empty()) {
|
|
special_tokens_subpattern += "|";
|
|
}
|
|
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
|
|
}
|
|
|
|
std::regex re(special_tokens_subpattern);
|
|
std::smatch m;
|
|
|
|
while (std::regex_search(str, m, re)) {
|
|
|
|
gpt_split_words(m.prefix(), words);
|
|
|
|
for (auto x : m) {
|
|
words.push_back(x);
|
|
}
|
|
str = m.suffix();
|
|
}
|
|
|
|
}
|
|
|
|
gpt_split_words(str, words);
|
|
}
|
|
|
|
|
|
std::vector<gpt_vocab::id> tokens;
|
|
for (const auto & word : words) {
|
|
for (int i = 0; i < (int) word.size(); ){
|
|
for (int j = word.size() - 1; j >= i; j--){
|
|
auto cand = word.substr(i, j-i+1);
|
|
auto it = vocab.token_to_id.find(cand);
|
|
if (it != vocab.token_to_id.end()){
|
|
tokens.push_back(it->second);
|
|
i = j + 1;
|
|
break;
|
|
}
|
|
else if (j == i){
|
|
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return tokens;
|
|
}
|
|
|
|
static std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
|
|
std::vector<gpt_vocab::id> output;
|
|
std::stringstream ss(input);
|
|
std::string token;
|
|
|
|
while (std::getline(ss, token, delimiter)) {
|
|
output.push_back(std::stoi(token));
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
static std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
|
|
if (fpath_test.empty()){
|
|
fprintf(stderr, "%s : No test file found.\n", __func__);
|
|
return std::map<std::string, std::vector<gpt_vocab::id>>();
|
|
}
|
|
|
|
std::map<std::string, std::vector<gpt_vocab::id>> tests;
|
|
|
|
auto fin = std::ifstream(fpath_test, std::ios_base::in);
|
|
const char * delimeter = " => ";
|
|
const char del_tok = ',';
|
|
std::string line;
|
|
while (std::getline(fin, line)) {
|
|
size_t delimiterPos = line.find(delimeter);
|
|
if (delimiterPos != std::string::npos) {
|
|
std::string text = line.substr(0, delimiterPos);
|
|
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
|
|
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
|
|
}
|
|
}
|
|
return tests;
|
|
}
|
|
|
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
|
|
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
|
|
|
|
size_t n_fails = 0;
|
|
|
|
for (const auto & test : tests) {
|
|
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
|
|
|
|
if (tokens != test.second){
|
|
n_fails++;
|
|
|
|
|
|
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
|
|
fprintf(stderr, "%s : tokens in hf: ", __func__);
|
|
for (const auto & t : test.second) {
|
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s : tokens in ggml: ", __func__);
|
|
for (const auto & t : tokens) {
|
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
|
|
}
|
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng) {
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const double scale = 1.0/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
|
}
|
|
}
|
|
|
|
|
|
std::partial_sort(
|
|
logits_id.begin(),
|
|
logits_id.begin() + top_k, logits_id.end(),
|
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
logits_id.resize(top_k);
|
|
|
|
double maxl = -INFINITY;
|
|
for (const auto & kv : logits_id) {
|
|
maxl = std::max(maxl, kv.first);
|
|
}
|
|
|
|
|
|
std::vector<double> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
double p = exp(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0f) {
|
|
double cumsum = 0.0f;
|
|
for (int i = 0; i < top_k; i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
top_k = i + 1;
|
|
probs.resize(top_k);
|
|
logits_id.resize(top_k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cumsum = 1.0/cumsum;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
probs[i] *= cumsum;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool gpt_eval(
|
|
const gpt_model & model,
|
|
const int n_threads,
|
|
const int n_past,
|
|
const std::vector<gpt_vocab::id> & embd_inp,
|
|
std::vector<float> & embd_w,
|
|
size_t & mem_per_token) {
|
|
const int N = embd_inp.size();
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_head = hparams.n_head;
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
static size_t buf_size = 256u*1024*1024;
|
|
static void * buf = malloc(buf_size);
|
|
|
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
|
const size_t buf_size_new = 1.1*(mem_per_token*N);
|
|
|
|
|
|
|
|
buf_size = buf_size_new;
|
|
buf = realloc(buf, buf_size);
|
|
if (buf == nullptr) {
|
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
struct ggml_init_params params = {
|
|
buf_size,
|
|
buf,
|
|
false,
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
|
|
|
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
for (int i = 0; i < N; ++i) {
|
|
((int32_t *) position->data)[i] = n_past + i;
|
|
}
|
|
|
|
|
|
struct ggml_tensor * inpL =
|
|
ggml_add(ctx0,
|
|
ggml_get_rows(ctx0, model.wte, embd),
|
|
ggml_get_rows(ctx0, model.wpe, position));
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
struct ggml_tensor * cur;
|
|
|
|
|
|
{
|
|
|
|
cur = ggml_norm(ctx0, inpL, hparams.eps);
|
|
|
|
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].c_attn_attn_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
|
cur);
|
|
}
|
|
|
|
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
|
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
|
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
|
|
|
|
|
if (N >= 1) {
|
|
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
|
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
|
|
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
|
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
|
}
|
|
|
|
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctx0,
|
|
ggml_cpy(ctx0,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctx0,
|
|
ggml_reshape_3d(ctx0,
|
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
|
n_embd/n_head, n_head, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
|
|
|
|
|
|
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, 1.0f/sqrt(float(n_embd)/n_head));
|
|
|
|
|
|
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
|
|
|
|
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
|
|
|
|
|
|
|
struct ggml_tensor * V_trans =
|
|
ggml_cpy(ctx0,
|
|
ggml_permute(ctx0,
|
|
ggml_reshape_3d(ctx0,
|
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
|
n_embd/n_head, n_head, n_past + N),
|
|
1, 2, 0, 3),
|
|
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
|
|
|
|
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
|
|
|
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
|
|
|
|
cur = ggml_cpy(ctx0,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].c_attn_proj_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
|
cur);
|
|
}
|
|
|
|
|
|
cur = ggml_add(ctx0, cur, inpL);
|
|
|
|
struct ggml_tensor * inpFF = cur;
|
|
|
|
|
|
{
|
|
|
|
{
|
|
cur = ggml_norm(ctx0, inpFF, hparams.eps);
|
|
|
|
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].c_mlp_fc_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
|
cur);
|
|
|
|
|
|
|
|
cur = ggml_gelu(ctx0, cur);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].c_mlp_proj_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
|
cur);
|
|
}
|
|
|
|
|
|
inpL = ggml_add(ctx0, cur, inpFF);
|
|
}
|
|
|
|
|
|
{
|
|
|
|
inpL = ggml_norm(ctx0, inpL, hparams.eps);
|
|
|
|
|
|
|
|
inpL = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
|
inpL),
|
|
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
|
}
|
|
|
|
|
|
|
|
|
|
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
|
|
|
|
|
|
|
|
|
|
|
|
ggml_build_forward_expand(gf, inpL);
|
|
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embd_w.resize(n_vocab);
|
|
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
|
|
|
if (mem_per_token == 0) {
|
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
}
|
|
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_hparams & params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
|
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
|
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
|
fprintf(stderr, " load prompt from a file\n");
|
|
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
|
|
fprintf(stderr, " test tokenization\n");
|
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
|
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
|
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
|
|
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx);
|
|
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n");
|
|
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
|
|
static std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_hparams& params) {
|
|
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
|
return argv[++i];
|
|
} else {
|
|
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_hparams & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-s" || arg == "--seed") {
|
|
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-t" || arg == "--threads") {
|
|
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-p" || arg == "--prompt") {
|
|
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
|
} else if (arg == "-n" || arg == "--n_predict") {
|
|
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-np" || arg == "--n_parallel") {
|
|
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--top_k") {
|
|
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--top_p") {
|
|
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--temp") {
|
|
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--repeat-last-n") {
|
|
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--repeat-penalty") {
|
|
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-b" || arg == "--batch_size") {
|
|
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-c" || arg == "--context") {
|
|
params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
|
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--ignore-eos") {
|
|
params.ignore_eos = true;
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
params.model = get_next_arg(i, argc, argv, arg, params);
|
|
} else if (arg == "-i" || arg == "--interactive") {
|
|
params.interactive = true;
|
|
} else if (arg == "-ip" || arg == "--interactive-port") {
|
|
params.interactive = true;
|
|
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
} else if (arg == "-f" || arg == "--file") {
|
|
get_next_arg(i, argc, argv, arg, params);
|
|
std::ifstream file(argv[i]);
|
|
if (!file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
break;
|
|
}
|
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
|
if (params.prompt.back() == '\n') {
|
|
params.prompt.pop_back();
|
|
}
|
|
} else if (arg == "-tt" || arg == "--token_test") {
|
|
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
|
}
|
|
else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng) {
|
|
const int r = rng() % 10;
|
|
switch (r) {
|
|
case 0: return "So";
|
|
case 1: return "Once upon a time";
|
|
case 2: return "When";
|
|
case 3: return "The";
|
|
case 4: return "After";
|
|
case 5: return "If";
|
|
case 6: return "import";
|
|
case 7: return "He";
|
|
case 8: return "She";
|
|
case 9: return "They";
|
|
}
|
|
|
|
return "The";
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
gpt_hparams params;
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
printf("%s: seed = %d\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.prompt.empty()) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
int64_t t_load_us = 0;
|
|
|
|
gpt_vocab vocab;
|
|
gpt_model model;
|
|
|
|
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!gpt_model_load(params.model, model, vocab)) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_load_us = ggml_time_us() - t_start_us;
|
|
|
|
test_gpt_tokenizer(vocab, params.token_test);
|
|
}
|
|
|
|
while(true) {
|
|
int n_past = 0;
|
|
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_predict_us = 0;
|
|
|
|
std::vector<float> logits;
|
|
|
|
|
|
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
|
|
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
|
|
|
printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size());
|
|
for (int i = 0; i < std::min(8, (int) embd_inp.size()); i++) {
|
|
printf("%d ", embd_inp[i]);
|
|
}
|
|
printf("\n\n");
|
|
|
|
|
|
|
|
std::vector<gpt_vocab::id> embd;
|
|
|
|
|
|
size_t mem_per_token = 0;
|
|
gpt_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
|
|
|
if (embd.size() > 0) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!gpt_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
|
printf("Failed to predict\n");
|
|
return 1;
|
|
}
|
|
|
|
t_predict_us += ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
|
|
if (i >= embd_inp.size()) {
|
|
|
|
const int top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
|
|
const int n_vocab = model.hparams.n_vocab;
|
|
|
|
gpt_vocab::id id = 0;
|
|
|
|
{
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
|
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
}
|
|
|
|
|
|
embd.push_back(id);
|
|
} else {
|
|
|
|
for (size_t k = i; k < embd_inp.size(); k++) {
|
|
embd.push_back(embd_inp[k]);
|
|
if (int32_t(embd.size()) >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
i += embd.size() - 1;
|
|
}
|
|
|
|
|
|
for (auto id : embd) {
|
|
printf("%s", vocab.id_to_token[id].c_str());
|
|
}
|
|
fflush(stdout);
|
|
|
|
|
|
if (embd.back() == 50256) {
|
|
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n\n");
|
|
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
|
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_free(model.ctx_w);
|
|
|
|
return 0;
|
|
}
|
|
|