File size: 2,986 Bytes
7b2449b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import webdataset as wds
from PIL import Image
import io
import matplotlib.pyplot as plt
import os
import json

from warnings import filterwarnings


# os.environ["CUDA_VISIBLE_DEVICES"] = "0"    # choose GPU if you are on a multi GPU server
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
from torchvision import datasets, transforms
import tqdm

from os.path import join
from datasets import load_dataset
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import json

import clip


from PIL import Image, ImageFile


#####  This script will predict the aesthetic score for this image file:

img_path = "test.jpg"





# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
    def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
        super().__init__()
        self.input_size = input_size
        self.xcol = xcol
        self.ycol = ycol
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            #nn.ReLU(),
            nn.Dropout(0.1),

            nn.Linear(64, 16),
            #nn.ReLU(),

            nn.Linear(16, 1)
        )

    def forward(self, x):
        return self.layers(x)

    def training_step(self, batch, batch_idx):
            x = batch[self.xcol]
            y = batch[self.ycol].reshape(-1, 1)
            x_hat = self.layers(x)
            loss = F.mse_loss(x_hat, y)
            return loss
    
    def validation_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

def normalized(a, axis=-1, order=2):
    import numpy as np  # pylint: disable=import-outside-toplevel

    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2 == 0] = 1
    return a / np.expand_dims(l2, axis)


model = MLP(768)  # CLIP embedding dim is 768 for CLIP ViT L 14

s = torch.load("sac+logos+ava1-l14-linearMSE.pth")   # load the model you trained previously or the model available in this repo

model.load_state_dict(s)

model.to("cuda")
model.eval()


device = "cuda" if torch.cuda.is_available() else "cpu"
model2, preprocess = clip.load("ViT-L/14", device=device)  #RN50x64   


pil_image = Image.open(img_path)

image = preprocess(pil_image).unsqueeze(0).to(device)



with torch.no_grad():
   image_features = model2.encode_image(image)

im_emb_arr = normalized(image_features.cpu().detach().numpy() )

prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor))

print( "Aesthetic score predicted by the model:")
print( prediction )