|
import webdataset as wds |
|
from PIL import Image |
|
import io |
|
import matplotlib.pyplot as plt |
|
import os |
|
import json |
|
|
|
from warnings import filterwarnings |
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import pytorch_lightning as pl |
|
import torch.nn as nn |
|
from torchvision import datasets, transforms |
|
import tqdm |
|
|
|
from os.path import join |
|
from datasets import load_dataset |
|
import pandas as pd |
|
from torch.utils.data import Dataset, DataLoader |
|
import json |
|
|
|
import clip |
|
|
|
|
|
from PIL import Image, ImageFile |
|
|
|
|
|
|
|
|
|
class MLP(pl.LightningModule): |
|
def __init__(self, input_size, xcol='emb', ycol='avg_rating'): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.xcol = xcol |
|
self.ycol = ycol |
|
self.layers = nn.Sequential( |
|
nn.Linear(self.input_size, 1024), |
|
|
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
|
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
|
|
nn.Dropout(0.1), |
|
|
|
nn.Linear(64, 16), |
|
|
|
|
|
nn.Linear(16, 1) |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
def training_step(self, batch, batch_idx): |
|
x = batch[self.xcol] |
|
y = batch[self.ycol].reshape(-1, 1) |
|
x_hat = self.layers(x) |
|
loss = F.mse_loss(x_hat, y) |
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x = batch[self.xcol] |
|
y = batch[self.ycol].reshape(-1, 1) |
|
x_hat = self.layers(x) |
|
loss = F.mse_loss(x_hat, y) |
|
return loss |
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) |
|
return optimizer |
|
|
|
def normalized(a, axis=-1, order=2): |
|
import numpy as np |
|
|
|
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) |
|
l2[l2 == 0] = 1 |
|
return a / np.expand_dims(l2, axis) |
|
|
|
|
|
model = MLP(768) |
|
|
|
s = torch.load("ava+logos-l14-linearMSE.pth") |
|
|
|
model.load_state_dict(s) |
|
|
|
|
|
model.to("cuda") |
|
model.eval() |
|
|
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model2, preprocess = clip.load("ViT-L/14", device=device) |
|
|
|
|
|
|
|
c=0 |
|
urls= [] |
|
predictions=[] |
|
|
|
|
|
|
|
|
|
|
|
for j in range(10): |
|
if j<10: |
|
|
|
dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/0000"+str(j)+".tar -") |
|
else: |
|
dataset = wds.WebDataset("pipe:aws s3 cp s3://s-datasets/laion400m/laion400m-dat-release/000"+str(j)+".tar -") |
|
|
|
|
|
for i, d in enumerate(dataset): |
|
print(c) |
|
|
|
metadata= json.loads(d['json']) |
|
|
|
pil_image = Image.open(io.BytesIO(d['jpg'])) |
|
c=c+1 |
|
try: |
|
image = preprocess(pil_image).unsqueeze(0).to(device) |
|
|
|
except: |
|
continue |
|
|
|
with torch.no_grad(): |
|
image_features = model2.encode_image(image) |
|
|
|
|
|
im_emb_arr = normalized(image_features.cpu().detach().numpy() ) |
|
|
|
prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor)) |
|
urls.append(metadata["url"]) |
|
predictions.append(prediction) |
|
|
|
|
|
df = pd.DataFrame(list(zip(urls, predictions)), |
|
columns =['filepath', 'prediction']) |
|
|
|
|
|
buckets = [(i, i+1) for i in range(20)] |
|
|
|
|
|
html= "<h1>Aesthetic subsets in LAION 100k samples</h1>" |
|
|
|
i =0 |
|
for [a,b] in buckets: |
|
a = a/2 |
|
b = b/2 |
|
total_part = df[( (df["prediction"] ) *1>= a) & ( (df["prediction"] ) *1 <= b)] |
|
print(a,b) |
|
print(len(total_part) ) |
|
count_part = len(total_part) / len(df) * 100 |
|
estimated =int ( len(total_part) ) |
|
part = total_part[:50] |
|
|
|
html+=f"<h2>In bucket {a} - {b} there is {count_part:.2f}% samples:{estimated:.2f} </h2> <div>" |
|
for filepath in part["filepath"]: |
|
html+='<img src="'+filepath +'" height="200" />' |
|
|
|
|
|
html+="</div>" |
|
i+=1 |
|
print(i) |
|
with open("./aesthetic_viz_laion_ava+logos_L14_100k-linearMSE.html", "w") as f: |
|
f.write(html) |
|
|
|
|
|
|