kosmos-2-patch14-224 / configuration_kosmos2.py
camenduru's picture
thanks to ydshieh ❤
a123ab1
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" KOSMOS-2 model configuration"""
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/kosmos-2-patch14-224": (
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json"
),
# See all KOSMOS-2 models at https://huggingface.co/models?filter=kosmos-2
}
class Kosmos2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a KOSMOS-2 text decoder
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65037):
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Kosmos2Model`].
embed_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the layers and the pooler layer.
layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
ffn_dim (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(embed_dim).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import Kosmos2TextConfig, Kosmos2TextModel
>>> # Initializing a Kosmos2TextConfig microsoft/kosmos-2-patch14-224 style configuration
>>> configuration = Kosmos2TextConfig()
>>> # Initializing a Kosmos2TextModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
>>> model = Kosmos2TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "kosmos_2_text_model"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "attention_heads", "hidden_size": "embed_dim"}
def __init__(
self,
vocab_size=65037,
max_position_embeddings=2048,
embed_dim=2048,
layers=24,
ffn_dim=8192,
attention_heads=32,
activation_function="gelu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
layerdrop=0.0,
layer_norm_eps=1e-5,
scale_embedding=True,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.embed_dim = embed_dim
self.layers = layers
self.ffn_dim = ffn_dim
self.attention_heads = attention_heads
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.scale_embedding = scale_embedding
self.use_cache = use_cache
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from Kosmos2Config
if config_dict.get("model_type") == "kosmos-2":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class Kosmos2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import Kosmos2VisionConfig, Kosmos2VisionModel
>>> # Initializing a Kosmos2VisionConfig with microsoft/kosmos-2-patch14-224 style configuration
>>> configuration = Kosmos2VisionConfig()
>>> # Initializing a Kosmos2VisionModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
>>> model = Kosmos2VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "kosmos_2_vision_model"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
projection_dim=512,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from Kosmos2Config
if config_dict.get("model_type") == "kosmos-2":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class Kosmos2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a KOSMOS-2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
latent_query_num (`int`, *optional*, defaults to 64):
The number of latent query tokens that represent the image features used in the text decoder component.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Kosmos2Config, Kosmos2Model
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
>>> configuration = Kosmos2Config()
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
>>> model = Kosmos2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "kosmos-2"
is_composition = True
def __init__(
self,
text_config=None,
vision_config=None,
latent_query_num=64,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")
self.text_config = Kosmos2TextConfig(**text_config)
self.vision_config = Kosmos2VisionConfig(**vision_config)
self.latent_query_num = latent_query_num
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["text_config"] = self.text_config.to_dict()
output["vision_config"] = self.vision_config.to_dict()
output["model_type"] = self.__class__.model_type
return output