|
import math |
|
import time |
|
|
|
import torch |
|
import torch.nn as nn |
|
import transformers |
|
|
|
from .quant import * |
|
|
|
|
|
DEBUG = False |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
|
|
|
|
class GPTQ: |
|
def __init__(self, layer): |
|
self.layer = layer |
|
self.dev = self.layer.weight.device |
|
W = layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
self.rows = W.shape[0] |
|
self.columns = W.shape[1] |
|
self.H = torch.zeros((self.columns, self.columns), device=self.dev) |
|
self.nsamples = 0 |
|
|
|
def add_batch(self, inp, out): |
|
if DEBUG: |
|
self.inp1 = inp |
|
self.out1 = out |
|
if len(inp.shape) == 2: |
|
inp = inp.unsqueeze(0) |
|
tmp = inp.shape[0] |
|
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D): |
|
if len(inp.shape) == 3: |
|
inp = inp.reshape((-1, inp.shape[-1])) |
|
inp = inp.t() |
|
if isinstance(self.layer, nn.Conv2d): |
|
unfold = nn.Unfold( |
|
self.layer.kernel_size, |
|
dilation=self.layer.dilation, |
|
padding=self.layer.padding, |
|
stride=self.layer.stride |
|
) |
|
inp = unfold(inp) |
|
inp = inp.permute([1, 0, 2]) |
|
inp = inp.flatten(1) |
|
self.H *= self.nsamples / (self.nsamples + tmp) |
|
self.nsamples += tmp |
|
|
|
inp = math.sqrt(2 / self.nsamples) * inp.float() |
|
|
|
self.H += inp.matmul(inp.t()) |
|
|
|
def fasterquant( |
|
self, blocksize=128, percdamp=.01, groupsize=-1 |
|
): |
|
W = self.layer.weight.data.clone() |
|
if isinstance(self.layer, nn.Conv2d): |
|
W = W.flatten(1) |
|
if isinstance(self.layer, transformers.Conv1D): |
|
W = W.t() |
|
W = W.float() |
|
|
|
tick = time.time() |
|
|
|
if not self.quantizer.ready(): |
|
self.quantizer.find_params(W, weight=True) |
|
|
|
H = self.H |
|
del self.H |
|
dead = torch.diag(H) == 0 |
|
H[dead, dead] = 1 |
|
W[:, dead] = 0 |
|
|
|
Losses = torch.zeros_like(W) |
|
Q = torch.zeros_like(W) |
|
|
|
damp = percdamp * torch.mean(torch.diag(H)) |
|
diag = torch.arange(self.columns, device=self.dev) |
|
H[diag, diag] += damp |
|
H = torch.linalg.cholesky(H) |
|
H = torch.cholesky_inverse(H) |
|
H = torch.linalg.cholesky(H, upper=True) |
|
Hinv = H |
|
|
|
scale = [] |
|
zero = [] |
|
now_idx = 1 |
|
|
|
for i1 in range(0, self.columns, blocksize): |
|
i2 = min(i1 + blocksize, self.columns) |
|
count = i2 - i1 |
|
|
|
W1 = W[:, i1:i2].clone() |
|
Q1 = torch.zeros_like(W1) |
|
Err1 = torch.zeros_like(W1) |
|
Losses1 = torch.zeros_like(W1) |
|
Hinv1 = Hinv[i1:i2, i1:i2] |
|
|
|
for i in range(count): |
|
w = W1[:, i] |
|
d = Hinv1[i, i] |
|
|
|
if groupsize != -1: |
|
if (i1 + i) % groupsize == 0: |
|
self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True) |
|
|
|
if ((i1 + i) // groupsize) - now_idx == -1: |
|
scale.append(self.quantizer.scale) |
|
zero.append(self.quantizer.zero) |
|
now_idx += 1 |
|
|
|
q = quantize( |
|
w.unsqueeze(1), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq |
|
).flatten() |
|
Q1[:, i] = q |
|
Losses1[:, i] = (w - q) ** 2 / d ** 2 |
|
|
|
err1 = (w - q) / d |
|
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0)) |
|
Err1[:, i] = err1 |
|
|
|
Q[:, i1:i2] = Q1 |
|
Losses[:, i1:i2] = Losses1 / 2 |
|
|
|
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:]) |
|
|
|
if DEBUG: |
|
self.layer.weight.data[:, :i2] = Q[:, :i2] |
|
self.layer.weight.data[:, i2:] = W[:, i2:] |
|
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2)) |
|
print(torch.sum(Losses)) |
|
|
|
torch.cuda.synchronize() |
|
print('time %.2f' % (time.time() - tick)) |
|
print('error', torch.sum(Losses).item()) |
|
|
|
if isinstance(self.layer, transformers.Conv1D): |
|
Q = Q.t() |
|
self.layer.weight.data = Q.reshape(self.layer.weight.shape).to(self.layer.weight.data.dtype) |
|
if DEBUG: |
|
print(torch.sum((self.layer(self.inp1) - self.out1) ** 2)) |
|
|
|
if scale == []: |
|
scale.append(self.quantizer.scale) |
|
zero.append(self.quantizer.zero) |
|
scale = torch.cat(scale,dim=1) |
|
zero = torch.cat(zero,dim=1) |
|
return scale,zero |
|
|
|
def free(self): |
|
if DEBUG: |
|
self.inp1 = None |
|
self.out1 = None |
|
self.H = None |
|
self.Losses = None |
|
self.Trace = None |
|
torch.cuda.empty_cache() |