File size: 10,914 Bytes
4602be6 7464f67 4602be6 a6aa676 9f81101 4602be6 a6354e1 2139af6 a6aa676 4602be6 84ec0dd b7c9d67 7464f67 b7c9d67 2139af6 a6aa676 76ca8d5 a6aa676 2139af6 a6aa676 2139af6 a6aa676 2139af6 a6aa676 2139af6 a6aa676 2139af6 a6aa676 6fe7dc1 a6aa676 6fe7dc1 a6aa676 2139af6 a6aa676 a6354e1 a6aa676 2139af6 a6aa676 76ca8d5 a6aa676 f4215fa 76ca8d5 4602be6 2139af6 4602be6 6fe7dc1 a6aa676 2139af6 a6aa676 2139af6 a6aa676 329abf3 a6aa676 bd7f636 a6aa676 2139af6 a6aa676 bd7f636 a6aa676 2139af6 a6aa676 2139af6 4602be6 bd7f636 a6aa676 4602be6 b945d24 4602be6 bd7f636 4602be6 bd7f636 6fe7dc1 bd7f636 84ec0dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
model-index:
- name: lince-zero
results: []
license: apache-2.0
language:
- es
thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg
pipeline_tag: text-generation
datasets:
- tatsu-lab/alpaca
- databricks/databricks-dolly-15k
library_name: transformers
inference: false
---
# Model Card for LINCE-ZERO
**LINCE-ZERO** (Llm for Instructions from Natural Corpus en Español) is a SOTA Spanish instruction-tuned LLM 🔥
Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using a combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish and augmented to 80k examples.
The model is released under the Apache 2.0 license.
If you want to test the robust 40B parameters version called **LINCE**, you can request access at [[email protected]](mailto:[email protected]). Be one of the first to discover the possibilities of LINCE!
<div style="text-align:center;width:250px;height:250px;">
<img src="https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg" alt="lince logo"">
</div>
<br />
# Table of Contents
- [Model Details](#model-details)
- [Model Description](#model-description)
- [Uses](#uses)
- [Direct Use](#direct-use)
- [Downstream Use](#downstream-use)
- [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
- [Training Details](#training-details)
- [Training Data](#training-data)
- [Evaluation](#evaluation)
- [Results](#results)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications](#technical-specifications)
- [Model Architecture and Objective](#model-architecture-and-objective)
- [Compute Infrastructure](#compute-infrastructure)
- [Hardware](#hardware)
- [Software](#software)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
- [Citation](#citation)
- [Contact](#contact)
# 🐯 Model Details
## Model Description
LINCE-ZERO (Llm for Instructions from Natural Corpus en Español) is a state-of-the-art Spanish instruction-tuned large language model. Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an 80k examples augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish.
- **Developed by:** [Clibrain](https://www.clibrain.com/)
- **Model type:** Language model, instruction model, causal decoder-only
- **Language(s) (NLP):** es
- **License:** apache-2.0
- **Parent Model:** https://huggingface.co/tiiuae/falcon-7b
## Model Sources
- **Paper**: Coming soon! ✨
- **Demo**: Coming soon! ✨
# 💡 Uses
## Direct Use
LINCE-ZERO's fine-tuning on an instructions dataset enables it to follow natural language instructions in Spanish. The direct use cases include virtual assistants and content generation.
<!--
Please note that running inference with LINCE-ZERO efficiently requires a minimum of XGB of memory.
-->
## Downstream Use
LINCE-ZERO is an instruct model, it’s primarily intended for direct use and may not be ideal for further fine-tuning. It serves as a general model suitable for a wide range of applications. However, for specific use cases within certain domains, fine-tuning with domain-specific data may improve LINCE-ZERO's performance.
## Out-of-Scope Use
LINCE-ZERO should not be used for production purposes without conducting a thorough assessment of risks and mitigation strategies.
# ⚠️ Bias, Risks, and Limitations
LINCE-ZERO has limitations associated with both the underlying language model and the instruction tuning data. It is crucial to acknowledge that predictions generated by the model may inadvertently exhibit common deficiencies of language models, including hallucination, toxicity, and perpetuate harmful stereotypes across protected classes, identity characteristics, and sensitive, social, and occupational groups.
Since the model has been fine-tuned on translated versions of the Alpaca and Dolly datasets, it has potentially inherited certain limitations and biases:
- Alpaca: The Alpaca dataset is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases inherent in that model. As the authors report, hallucination seems to be a common failure mode for Alpaca, even compared to `text-davinci-003`.
- Dolly: The Dolly dataset incorporates information from Wikipedia, which is a crowdsourced corpus. Therefore, the dataset's contents may reflect the biases, factual errors, and topical focus present in Wikipedia. Additionally, annotators involved in the dataset creation may not be native English speakers, and their demographics and subject matter may reflect the makeup of Databricks employees.
## Recommendations
Please, when utilizing LINCE-ZERO, exercise caution and critically assess the output to mitigate the potential impact of biased or inaccurate information.
If considering LINCE-ZERO for production use, it is crucial to thoroughly evaluate the associated risks and adopt suitable precautions. Conduct a comprehensive assessment to address any potential biases and ensure compliance with legal and ethical standards.
# 📚 Training Details
## Training Data
LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated with the best quality into Spanish.
Alpaca is a 24.2 MB dataset of 52,002 instructions and demonstrations in English. It was generated by OpenAI's `text-davinci-003` engine using the data generation pipeline from the [Self-Instruct framework](https://github.com/yizhongw/self-instruct) with some modifications. For further details, refer to [Alpaca's Data Card](https://huggingface.co/datasets/tatsu-lab/alpaca).
Dolly is a 13.1 MB dataset of 15,011 instruction-following records in American English. It was generated by thousands of Databricks employees, who were requested to provide reference texts copied from Wikipedia for specific categories. To learn more, consult [Dolly’s Data Card](https://huggingface.co/datasets/databricks/databricks-dolly-15k).
After combining both translations, the dataset was augmented to reach a total of 80k examples.
# ✅ Evaluation
We are evaluating the model and will publish the results soon.
### Results
Paper coming soon! Meanwhile, check the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
# ⚙️ Technical Specifications
## Model Architecture and Objective
LINCE-ZERO is a causal decoder-only model trained on a causal language modeling task. Its objective is to predict the next token in a sequence based on the context provided.
The architecture of LINCE-ZERO is based on Falcon-7B, which itself is adapted from the GPT-3 paper (Brown et al., 2020) with the following modifications:
- Positional embeddings: rotary (Su et al., 2021);
- Attention: multiquery (Shazeer et al., 2019) and FlashAttention (Dao et al., 2022);
- Decoder-block: parallel attention/MLP with a single-layer norm.
## Compute Infrastructure
### Hardware
LINCE-ZERO was trained using a GPU A100 with 40 GB during 8h.
### Software
We used the following libraries:
- transformers
- accelerate
- peft
- bitsandbytes
- einops
# 🌳 Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 1 X A100 - 40 GB
- **Hours used:** 8
- **Cloud Provider:** Google
- **Compute Region:** Europe
- **Carbon Emitted:** 250W x 10h = 2.5 kWh x 0.57 kg eq. CO2/kWh = 1.42 kg eq. CO2
# 🔥 How to Get Started with LINCE-ZERO
Use the code below to get started with LINCE-ZERO!
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer
model_id = "clibrain/lince-zero"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
def create_instruction(instruction, input_data=None, context=None):
sections = {
"Instrucción": instruction,
"Entrada": input_data,
"Contexto": context,
}
system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
prompt = system_prompt
for title, content in sections.items():
if content is not None:
prompt += f"### {title}:\n{content}\n\n"
prompt += "### Respuesta:\n"
return prompt
def generate(
instruction,
input=None,
context=None,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs
):
prompt = create_instruction(instruction, input, context)
print(prompt.replace("### Respuesta:\n", "")
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Respuesta:")[1].lstrip("\n")
instruction = "Dame una lista de lugares a visitar en España."
print(generate(instruction))
```
# 📝 Citation
There is a paper coming soon! Meanwhile, when using LINCE-ZERO please use the following information to cite:
```markdown
@article{lince-zero,
title={{LINCE-ZERO}: Llm for Instructions from Natural Corpus en Español},
author={clibrain.com},
year={2023}
}
```
# 📧 Contact
[[email protected]](mailto:[email protected]) |