File size: 10,966 Bytes
4602be6
 
 
 
 
 
 
7464f67
4602be6
a6aa676
 
 
 
9f81101
4602be6
 
a6354e1
 
2139af6
 
 
a6aa676
 
4602be6
84ec0dd
 
b7c9d67
7464f67
b7c9d67
 
2139af6
a6aa676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ca8d5
a6aa676
 
 
2139af6
a6aa676
 
 
2139af6
a6aa676
 
 
 
 
2139af6
a6aa676
 
 
2139af6
5e31360
a6aa676
2139af6
a6aa676
 
 
 
 
6fe7dc1
a6aa676
6fe7dc1
a6aa676
 
 
 
 
 
 
 
 
2139af6
a6aa676
 
 
 
 
a6354e1
a6aa676
 
 
 
 
 
 
 
2139af6
a6aa676
 
 
76ca8d5
a6aa676
 
 
 
f4215fa
76ca8d5
4602be6
 
2139af6
4602be6
6fe7dc1
a6aa676
 
 
2139af6
a6aa676
2139af6
a6aa676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329abf3
a6aa676
 
 
bd7f636
 
 
 
 
 
a6aa676
2139af6
a6aa676
 
 
bd7f636
 
 
 
 
a6aa676
 
2139af6
a6aa676
2139af6
4602be6
 
 
 
 
 
 
bd7f636
a6aa676
4602be6
b945d24
4602be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bdcd4
4602be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd7f636
 
 
 
 
 
 
 
 
6fe7dc1
bd7f636
 
 
 
 
 
84ec0dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
model-index:
- name: lince-zero
  results: []
license: apache-2.0
language:
- es
thumbnail: https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg
pipeline_tag: text-generation
datasets:
- tatsu-lab/alpaca
- databricks/databricks-dolly-15k
library_name: transformers
inference: false
---

# Model Card for LINCE-ZERO

**LINCE-ZERO** (Llm for Instructions from Natural Corpus en Español) is a SOTA Spanish instruction-tuned LLM 🔥

Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using a combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish and augmented to 80k examples.

The model is released under the Apache 2.0 license.

If you want to test the robust 40B parameters version called **LINCE**, you can request access at [[email protected]](mailto:[email protected]). Be one of the first to discover the possibilities of LINCE!

<div style="text-align:center;width:250px;height:250px;">
    <img src="https://huggingface.co/clibrain/lince-zero/resolve/main/LINCE-CLIBRAIN-HD.jpg" alt="lince logo"">
</div>

<br />

# Table of Contents

- [Model Details](#model-details)
  - [Model Description](#model-description)
- [Uses](#uses)
  - [Direct Use](#direct-use)
  - [Downstream Use](#downstream-use)
  - [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
  - [Recommendations](#recommendations)
- [Training Details](#training-details)
  - [Training Data](#training-data)
- [Evaluation](#evaluation)
  - [Results](#results)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications](#technical-specifications)
  - [Model Architecture and Objective](#model-architecture-and-objective)
  - [Compute Infrastructure](#compute-infrastructure)
    - [Hardware](#hardware)
    - [Software](#software)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
- [Citation](#citation)
- [Contact](#contact)

# 🐯 Model Details

## Model Description

LINCE-ZERO (Llm for Instructions from Natural Corpus en Español) is a state-of-the-art Spanish instruction-tuned large language model. Developed by [Clibrain](https://www.clibrain.com/), it is a causal decoder-only model with 7B parameters. LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an 80k examples augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated into Spanish.

- **Developed by:** [Clibrain](https://www.clibrain.com/)
- **Model type:** Language model, instruction model, causal decoder-only
- **Language(s) (NLP):** es
- **License:** apache-2.0
- **Parent Model:** https://huggingface.co/tiiuae/falcon-7b

## Model Sources

- **Paper**: Coming soon! ✨
- **Demo**: [LINCE CHAT](https://huggingface.co/spaces/clibrain/lince-chat) ✨

# 💡 Uses

## Direct Use

LINCE-ZERO's fine-tuning on an instructions dataset enables it to follow natural language instructions in Spanish. The direct use cases include virtual assistants and content generation.

<!--
Please note that running inference with LINCE-ZERO efficiently requires a minimum of XGB of memory.
-->

## Downstream Use

LINCE-ZERO is an instruct model, it’s primarily intended for direct use and may not be ideal for further fine-tuning. It serves as a general model suitable for a wide range of applications. However, for specific use cases within certain domains, fine-tuning with domain-specific data may improve LINCE-ZERO's performance.

## Out-of-Scope Use

LINCE-ZERO should not be used for production purposes without conducting a thorough assessment of risks and mitigation strategies. 

# ⚠️ Bias, Risks, and Limitations

LINCE-ZERO has limitations associated with both the underlying language model and the instruction tuning data. It is crucial to acknowledge that predictions generated by the model may inadvertently exhibit common deficiencies of language models, including hallucination, toxicity, and perpetuate harmful stereotypes across protected classes, identity characteristics, and sensitive, social, and occupational groups.

Since the model has been fine-tuned on translated versions of the Alpaca and Dolly datasets, it has potentially inherited certain limitations and biases:

- Alpaca: The Alpaca dataset is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases inherent in that model. As the authors report, hallucination seems to be a common failure mode for Alpaca, even compared to `text-davinci-003`.
- Dolly: The Dolly dataset incorporates information from Wikipedia, which is a crowdsourced corpus. Therefore, the dataset's contents may reflect the biases, factual errors, and topical focus present in Wikipedia. Additionally, annotators involved in the dataset creation may not be native English speakers, and their demographics and subject matter may reflect the makeup of Databricks employees.

## Recommendations

Please, when utilizing LINCE-ZERO, exercise caution and critically assess the output to mitigate the potential impact of biased or inaccurate information.

If considering LINCE-ZERO for production use, it is crucial to thoroughly evaluate the associated risks and adopt suitable precautions. Conduct a comprehensive assessment to address any potential biases and ensure compliance with legal and ethical standards.

# 📚 Training Details

## Training Data

LINCE-ZERO is based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and has been fine-tuned using an augmented combination of the [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets, both translated with the best quality into Spanish.

Alpaca is a 24.2 MB dataset of 52,002 instructions and demonstrations in English. It was generated by OpenAI's `text-davinci-003` engine using the data generation pipeline from the [Self-Instruct framework](https://github.com/yizhongw/self-instruct) with some modifications. For further details, refer to [Alpaca's Data Card](https://huggingface.co/datasets/tatsu-lab/alpaca).

Dolly is a 13.1 MB dataset of 15,011 instruction-following records in American English. It was generated by thousands of Databricks employees, who were requested to provide reference texts copied from Wikipedia for specific categories. To learn more, consult [Dolly’s Data Card](https://huggingface.co/datasets/databricks/databricks-dolly-15k).

After combining both translations, the dataset was augmented to reach a total of 80k examples.


# ✅ Evaluation

We are evaluating the model and will publish the results soon.

### Results

Paper coming soon! Meanwhile, check the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

# ⚙️ Technical Specifications

## Model Architecture and Objective

LINCE-ZERO is a causal decoder-only model trained on a causal language modeling task. Its objective is to predict the next token in a sequence based on the context provided.

The architecture of LINCE-ZERO is based on Falcon-7B, which itself is adapted from the GPT-3 paper (Brown et al., 2020) with the following modifications:

- Positional embeddings: rotary (Su et al., 2021);
- Attention: multiquery (Shazeer et al., 2019) and FlashAttention (Dao et al., 2022);
- Decoder-block: parallel attention/MLP with a single-layer norm.

## Compute Infrastructure

### Hardware

LINCE-ZERO was trained using a GPU A100 with 40 GB during 8h.

### Software

We used the following libraries:
- transformers
- accelerate
- peft
- bitsandbytes
- einops

# 🌳 Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** 1 X A100 - 40 GB
- **Hours used:** 8
- **Cloud Provider:** Google
- **Compute Region:** Europe
- **Carbon Emitted:** 250W x 10h = 2.5 kWh x 0.57 kg eq. CO2/kWh = 1.42 kg eq. CO2


# 🔥 How to Get Started with LINCE-ZERO

Use the code below to get started with LINCE-ZERO!

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer

model_id = "clibrain/lince-zero"

model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)

def create_instruction(instruction, input_data=None, context=None):
    sections = {
        "Instrucción": instruction,
        "Entrada": input_data,
        "Contexto": context,
    }

    system_prompt = "A continuación hay una instrucción que describe una tarea, junto con una entrada que proporciona más contexto. Escriba una respuesta que complete adecuadamente la solicitud.\n\n"
    prompt = system_prompt

    for title, content in sections.items():
        if content is not None:
            prompt += f"### {title}:\n{content}\n\n"

    prompt += "### Respuesta:\n"

    return prompt


def generate(
        instruction,
        input=None,
        context=None,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        **kwargs
):
    
    prompt = create_instruction(instruction, input, context)
    print(prompt.replace("### Respuesta:\n", ""))
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Respuesta:")[1].lstrip("\n")

instruction = "Dame una lista de lugares a visitar en España."
print(generate(instruction))
```

# 📝 Citation

There is a paper coming soon! Meanwhile, when using LINCE-ZERO please use the following information to cite:

```markdown
@article{lince-zero,
  title={{LINCE-ZERO}: Llm for Instructions from Natural Corpus en Español},
  author={clibrain.com},
  year={2023}
}
```

# 📧 Contact

[[email protected]](mailto:[email protected])