--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: whisperturbo results: [] --- # whisperturbo This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 751 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9686 | 0.4870 | 150 | 0.6597 | | 0.6634 | 0.9740 | 300 | 0.5482 | | 0.5176 | 1.4610 | 450 | 0.5022 | | 0.5383 | 1.9481 | 600 | 0.4719 | | 0.4322 | 2.4351 | 750 | 0.4319 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3