Update README.md
Browse files
README.md
CHANGED
@@ -3,31 +3,12 @@ tags:
|
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
- openwebtext
|
6 |
-
|
7 |
-
- name: llama-2-7b-hf-distill-kth-len256-random-shift-all-lr1e-5-decayto0
|
8 |
-
results: []
|
9 |
---
|
10 |
|
11 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
-
|
14 |
-
# llama-2-7b-hf-distill-kth-len256-random-shift-all-lr1e-5-decayto0
|
15 |
-
|
16 |
-
This model is a fine-tuned version of [/scr-ssd/cygu/weights/Llama-2-7b-hf/](https://huggingface.co//scr-ssd/cygu/weights/Llama-2-7b-hf/) on the openwebtext dataset.
|
17 |
-
|
18 |
## Model description
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
## Intended uses & limitations
|
23 |
-
|
24 |
-
More information needed
|
25 |
-
|
26 |
-
## Training and evaluation data
|
27 |
-
|
28 |
-
More information needed
|
29 |
-
|
30 |
-
## Training procedure
|
31 |
|
32 |
### Training hyperparameters
|
33 |
|
@@ -45,13 +26,9 @@ The following hyperparameters were used during training:
|
|
45 |
- lr_scheduler_warmup_steps: 500
|
46 |
- training_steps: 5000
|
47 |
|
48 |
-
### Training results
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
### Framework versions
|
53 |
|
54 |
- Transformers 4.29.2
|
55 |
- Pytorch 2.0.1+cu117
|
56 |
- Datasets 2.13.1
|
57 |
-
- Tokenizers 0.13.3
|
|
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
- openwebtext
|
6 |
+
license: llama2
|
|
|
|
|
7 |
---
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
## Model description
|
10 |
|
11 |
+
Logits-based watermark distilled Llama 2 7B using the KTH \\(s=256\\) watermarking strategy in the paper [On the Learnability of Watermarks for Language Models](https://arxiv.org/abs/2312.04469).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
### Training hyperparameters
|
14 |
|
|
|
26 |
- lr_scheduler_warmup_steps: 500
|
27 |
- training_steps: 5000
|
28 |
|
|
|
|
|
|
|
|
|
29 |
### Framework versions
|
30 |
|
31 |
- Transformers 4.29.2
|
32 |
- Pytorch 2.0.1+cu117
|
33 |
- Datasets 2.13.1
|
34 |
+
- Tokenizers 0.13.3
|