--- license: mit tags: - Machine Learning Interatomic Potential --- # Model Card for mace-universal [MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697). [2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920). # Usage 1. (optional) Install Pytorch, [ASE](https://wiki.fysik.dtu.dk/ase/) prerequisites for specific version 2. Install [MACE](https://github.com/ACEsuit/mace) through GitHub (not through pypi) ```shell pip install git+https://github.com/ACEsuit/mace.git ``` 3. Use MACECalculator ```python from mace.calculators import MACECalculator from ase.md.npt import NPT calculator = MACECalculator( model_paths=/path/to/pretrained.model, device=device ) nvt = NPT( atoms=atoms, timestep=timestep, temperature_K=temperature, externalstress=externalstress, ) ``` # Citing If you use the pretrained models in this repository, please cite all the following: ``` @inproceedings{Batatia2022mace, title={{MACE}: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields}, author={Ilyes Batatia and David Peter Kovacs and Gregor N. C. Simm and Christoph Ortner and Gabor Csanyi}, booktitle={Advances in Neural Information Processing Systems}, editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho}, year={2022}, url={https://openreview.net/forum?id=YPpSngE-ZU} } @article{riebesell2023matbench, title={Matbench Discovery--An evaluation framework for machine learning crystal stability prediction}, author={Riebesell, Janosh and Goodall, Rhys EA and Jain, Anubhav and Benner, Philipp and Persson, Kristin A and Lee, Alpha A}, journal={arXiv preprint arXiv:2308.14920}, year={2023} } @misc {yuan_chiang_2023, author = { {Yuan Chiang} }, title = { mace-universal (Revision e5ebd9b) }, year = 2023, url = { https://huggingface.co/cyrusyc/mace-universal }, doi = { 10.57967/hf/1202 }, publisher = { Hugging Face } } @article{deng2023chgnet, title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling}, author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J and Ceder, Gerbrand}, journal={Nature Machine Intelligence}, pages={1--11}, year={2023}, publisher={Nature Publishing Group UK London} } ``` # Training Details ## Training Data ## Training Procedure