--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: text-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - type: accuracy value: 0.93675 name: Accuracy --- # text-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1414 - Accuracy: 0.9367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0232 | 1.0 | 63 | 0.2424 | 0.917 | | 0.1925 | 2.0 | 126 | 0.1600 | 0.934 | | 0.1134 | 3.0 | 189 | 0.1418 | 0.935 | | 0.076 | 4.0 | 252 | 0.1461 | 0.931 | | 0.0604 | 5.0 | 315 | 0.1414 | 0.9367 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2