File size: 77,104 Bytes
4635e17 e71d3c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
0
"This paper describes our participation in SemEval-2023 Task 9, Intimacy Analysis of Multilingual Tweets. We fine-tune some of the most popular transformer models with the training dataset and synthetic data generated by different data augmentation techniques. During the development phase, our best results were obtained by using XLM-T. Data augmentation techniques provide a very slight improvement in the results. Our system ranked in the 27th position out of the 45 participating systems. Despite its modest results, our system shows promising results in languages such as Portuguese, English, and Dutch. All our code is available in the repository \url{https://github.com/isegura/hulat_intimacy}."
"Clinical prediction is an essential task in the healthcare industry. However, the recent success of transformers, on which large language models are built, has not been extended to this domain. In this research, we explore the use of transformers and language models in prognostic prediction for immunotherapy using real-world patients' clinical data and molecular profiles. This paper investigates the potential of transformers to improve clinical prediction compared to conventional machine learning approaches and addresses the challenge of few-shot learning in predicting rare disease areas. The study benchmarks the efficacy of baselines and language models on prognostic prediction across multiple cancer types and investigates the impact of different pretrained language models under few-shot regimes. The results demonstrate significant improvements in accuracy and highlight the potential of NLP in clinical research to improve early detection and intervention for different diseases. Anonymous codes are available at \url{https://anonymous.4open.science/r/table2text-88ED}."
"Knowledge graphs (KGs) have received increasing attention due to its wide applications on natural language processing. However, its use case on temporal question answering (QA) has not been well-explored. Most of existing methods are developed based on pre-trained language models, which might not be capable to learn \emph{temporal-specific} presentations of entities in terms of temporal KGQA task. To alleviate this problem, we propose a novel \textbf{T}ime-aware \textbf{M}ultiway \textbf{A}daptive (\textbf{TMA}) fusion network. Inspired by the step-by-step reasoning behavior of humans. For each given question, TMA first extracts the relevant concepts from the KG, and then feeds them into a multiway adaptive module to produce a \emph{temporal-specific} representation of the question. This representation can be incorporated with the pre-trained KG embedding to generate the final prediction. Empirical results verify that the proposed model achieves better performance than the state-of-the-art models in the benchmark dataset. Notably, the Hits@1 and Hits@10 results of TMA on the CronQuestions dataset's complex questions are absolutely improved by 24\% and 10\% compared to the best-performing baseline. Furthermore, we also show that TMA employing an adaptive fusion mechanism can provide interpretability by analyzing the proportion of information in question representations."
"Transformer-based pre-trained models have achieved great improvements in semantic matching. However, existing models still suffer from insufficient ability to capture subtle differences. The modification, addition and deletion of words in sentence pairs may make it difficult for the model to predict their relationship. To alleviate this problem, we propose a novel Dual Path Modeling Framework to enhance the model's ability to perceive subtle differences in sentence pairs by separately modeling affinity and difference semantics. Based on dual-path modeling framework we design the Dual Path Modeling Network (DPM-Net) to recognize semantic relations. And we conduct extensive experiments on 10 well-studied semantic matching and robustness test datasets, and the experimental results show that our proposed method achieves consistent improvements over baselines."
"Large language models (LLMs), such as ChatGPT, are able to generate human-like, fluent responses for many downstream tasks, e.g., task-oriented dialog and question answering. However, applying LLMs to real-world, mission-critical applications remains challenging mainly due to their tendency to generate hallucinations and inability to use external knowledge.This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules. Our system makes the LLM generate responses grounded in consolidated external knowledge, e.g., stored in task-specific databases. It also iteratively revises LLM prompts to improve model responses using feedback generated by utility functions, e.g., the factuality score of a LLM-generated response. The effectiveness of LLM-Augmenter is empirically validated on two types of mission-critical scenarios, task-oriented dialog and open-domain question answering. LLM-Augmenter significantly reduces ChatGPT's hallucinations without sacrificing the fluency and informativeness of its responses. We make the source code and models publicly available."
"Recently, much exertion has been paid to design graph self-supervised methods to obtain generalized pre-trained models, and adapt pre-trained models onto downstream tasks through fine-tuning. However, there exists an inherent gap between pretext and downstream graph tasks, which insufficiently exerts the ability of pre-trained models and even leads to negative transfer. Meanwhile, prompt tuning has seen emerging success in natural language processing by aligning pre-training and fine-tuning with consistent training objectives. In this paper, we identify the challenges for graph prompt tuning: The first is the lack of a strong and universal pre-training task across sundry pre-training methods in graph domain. The second challenge lies in the difficulty of designing a consistent training objective for both pre-training and downstream tasks. To overcome above obstacles, we propose a novel framework named SGL-PT which follows the learning strategy ``Pre-train, Prompt, and Predict''. Specifically, we raise a strong and universal pre-training task coined as SGL that acquires the complementary merits of generative and contrastive self-supervised graph learning. And aiming for graph classification task, we unify pre-training and fine-tuning by designing a novel verbalizer-free prompting function, which reformulates the downstream task in a similar format as pretext task. Empirical results show that our method surpasses other baselines under unsupervised setting, and our prompt tuning method can greatly facilitate models on biological datasets over fine-tuning methods."
"Distilled self-supervised models have shown competitive performance and efficiency in recent years. However, there is a lack of experience in jointly distilling multiple self-supervised speech models. In our work, we performed Ensemble Knowledge Distillation (EKD) on various self-supervised speech models such as HuBERT, RobustHuBERT, and WavLM. We tried two different aggregation techniques, layerwise-average and layerwise-concatenation, to the representations of different teacher models and found that the former was more effective. On top of that, we proposed a multiple prediction head method for student models to predict different layer outputs of multiple teacher models simultaneously. The experimental results show that our method improves the performance of the distilled models on four downstream speech processing tasks, Phoneme Recognition, Speaker Identification, Emotion Recognition, and Automatic Speech Recognition in the hidden-set track of the SUPERB benchmark."
"Unsupervised extractive summarization aims to extract salient sentences from a document as the summary without labeled data. Recent literatures mostly research how to leverage sentence similarity to rank sentences in the order of salience. However, sentence similarity estimation using pre-trained language models mostly takes little account of document-level information and has a weak correlation with sentence salience ranking. In this paper, we proposed two novel strategies to improve sentence similarity estimation for unsupervised extractive summarization. We use contrastive learning to optimize a document-level objective that sentences from the same document are more similar than those from different documents. Moreover, we use mutual learning to enhance the relationship between sentence similarity estimation and sentence salience ranking, where an extra signal amplifier is used to refine the pivotal information. Experimental results demonstrate the effectiveness of our strategies."
"Effective figure captions are crucial for clear comprehension of scientific figures, yet poor caption writing remains a common issue in scientific articles. Our study of arXiv cs.CL papers found that 53.88% of captions were rated as unhelpful or worse by domain experts, showing the need for better caption generation. Previous efforts in figure caption generation treated it as a vision task, aimed at creating a model to understand visual content and complex contextual information. Our findings, however, demonstrate that over 75% of figure captions' tokens align with corresponding figure-mentioning paragraphs, indicating great potential for language technology to solve this task. In this paper, we present a novel approach for generating figure captions in scientific documents using text summarization techniques. Our approach extracts sentences referencing the target figure, then summarizes them into a concise caption. In the experiments on real-world arXiv papers (81.2% were published at academic conferences), our method, using only text data, outperformed previous approaches in both automatic and human evaluations. We further conducted data-driven investigations into the two core challenges: (i) low-quality author-written captions and (ii) the absence of a standard for good captions. We found that our models could generate improved captions for figures with original captions rated as unhelpful, and the model trained on captions with more than 30 tokens produced higher-quality captions. We also found that good captions often include the high-level takeaway of the figure. Our work proves the effectiveness of text summarization in generating figure captions for scholarly articles, outperforming prior vision-based approaches. Our findings have practical implications for future figure captioning systems, improving scientific communication clarity."
"Leveraging contextual knowledge has become standard practice in automated claim verification, yet the impact of temporal reasoning has been largely overlooked. Our study demonstrates that time positively influences the claim verification process of evidence-based fact-checking. The temporal aspects and relations between claims and evidence are first established through grounding on shared timelines, which are constructed using publication dates and time expressions extracted from their text. Temporal information is then provided to RNN-based and Transformer-based classifiers before or after claim and evidence encoding. Our time-aware fact-checking models surpass base models by up to 9% Micro F1 (64.17%) and 15% Macro F1 (47.43%) on the MultiFC dataset. They also outperform prior methods that explicitly model temporal relations between evidence. Our findings show that the presence of temporal information and the manner in which timelines are constructed greatly influence how fact-checking models determine the relevance and supporting or refuting character of evidence documents."
"Pre-trained language models (PLMs) have made remarkable progress in table-to-text generation tasks. However, the topological gap between tabular data and text and the lack of domain-specific knowledge make it difficult for PLMs to produce faithful text, especially in real-world applications with limited resources. In this paper, we mitigate the above challenges by introducing a novel augmentation method: Prompt-based Adapter (PA), which targets table-to-text generation under few-shot conditions. The core insight design of the PA is to inject prompt templates for augmenting domain-specific knowledge and table-related representations into the model for bridging the structural gap between tabular data and descriptions through adapters. Such prompt-based knowledge augmentation method brings at least two benefits: (1) enables us to fully use the large amounts of unlabelled domain-specific knowledge, which can alleviate the PLMs' inherent shortcomings of lacking domain knowledge; (2) allows us to design different types of tasks supporting the generative challenge. Extensive experiments and analyses are conducted on three open-domain few-shot NLG datasets: Humans, Books, and Songs. Compared to previous state-of-the-art approaches, our model achieves superior performance in terms of both fluency and accuracy as judged by human and automatic evaluations."
"This paper presents a novel optimization framework for automatic speech recognition (ASR) with the aim of reducing hallucinations produced by an ASR model. The proposed framework optimizes the ASR model to maximize an expected factual consistency score between ASR hypotheses and ground-truth transcriptions, where the factual consistency score is computed by a separately trained estimator. Experimental results using the AMI meeting corpus and the VoxPopuli corpus show that the ASR model trained with the proposed framework generates ASR hypotheses that have significantly higher consistency scores with ground-truth transcriptions while maintaining the word error rates close to those of cross entropy-trained ASR models. Furthermore, it is shown that training the ASR models with the proposed framework improves the speech summarization quality as measured by the factual consistency of meeting conversation summaries generated by a large language model."
"Large Language Models (LLMs) have yielded fast and dramatic progress in NLP, and now offer strong few- and zero-shot capabilities on new tasks, reducing the need for annotation. This is especially exciting for the medical domain, in which supervision is often scant and expensive. At the same time, model predictions are rarely so accurate that they can be trusted blindly. Clinicians therefore tend to favor ""interpretable"" classifiers over opaque LLMs. For example, risk prediction tools are often linear models defined over manually crafted predictors that must be laboriously extracted from EHRs. We propose CHiLL (Crafting High-Level Latents), which uses LLMs to permit natural language specification of high-level features for linear models via zero-shot feature extraction using expert-composed queries. This approach has the promise to empower physicians to use their domain expertise to craft features which are clinically meaningful for a downstream task of interest, without having to manually extract these from raw EHR (as often done now). We are motivated by a real-world risk prediction task, but as a reproducible proxy, we use MIMIC-III and MIMIC-CXR data and standard predictive tasks (e.g., 30-day readmission) to evaluate our approach. We find that linear models using automatically extracted features are comparably performant to models using reference features, and provide greater interpretability than linear models using ""Bag-of-Words"" features. We verify that learned feature weights align well with clinical expectations."
"The recent progress in text-based audio retrieval was largely propelled by the release of suitable datasets. Since the manual creation of such datasets is a laborious task, obtaining data from online resources can be a cheap solution to create large-scale datasets. We study the recently proposed SoundDesc benchmark dataset, which was automatically sourced from the BBC Sound Effects web page. In our analysis, we find that SoundDesc contains several duplicates that cause leakage of training data to the evaluation data. This data leakage ultimately leads to overly optimistic retrieval performance estimates in previous benchmarks. We propose new training, validation, and testing splits for the dataset that we make available online. To avoid weak contamination of the test data, we pool audio files that share similar recording setups. In our experiments, we find that the new splits serve as a more challenging benchmark."
"In this paper, we describe VivesDebate-Speech, a corpus of spoken argumentation created to leverage audio features for argument mining tasks. The creation of this corpus represents an important contribution to the intersection of speech processing and argument mining communities, and one of the most complete publicly available resources in this topic. Moreover, we have performed a set of first-of-their-kind experiments which show an improvement when integrating audio features into the argument mining pipeline. The provided results can be used as a baseline for future research."
"Recent work in visual representation learning for robotics demonstrates the viability of learning from large video datasets of humans performing everyday tasks. Leveraging methods such as masked autoencoding and contrastive learning, these representations exhibit strong transfer to policy learning for visuomotor control. But, robot learning encompasses a diverse set of problems beyond control including grasp affordance prediction, language-conditioned imitation learning, and intent scoring for human-robot collaboration, amongst others. First, we demonstrate that existing representations yield inconsistent results across these tasks: masked autoencoding approaches pick up on low-level spatial features at the cost of high-level semantics, while contrastive learning approaches capture the opposite. We then introduce Voltron, a framework for language-driven representation learning from human videos and associated captions. Voltron trades off language-conditioned visual reconstruction to learn low-level visual patterns, and visually-grounded language generation to encode high-level semantics. We also construct a new evaluation suite spanning five distinct robot learning problems $\unicode{x2013}$ a unified platform for holistically evaluating visual representations for robotics. Through comprehensive, controlled experiments across all five problems, we find that Voltron's language-driven representations outperform the prior state-of-the-art, especially on targeted problems requiring higher-level features."
"Despite recent advancements in Machine Learning, many tasks still involve working in low-data regimes which can make solving natural language problems difficult. Recently, a number of text augmentation techniques have emerged in the field of Natural Language Processing (NLP) which can enrich the training data with new examples, though they are not without their caveats. For instance, simple rule-based heuristic methods are effective, but lack variation in semantic content and syntactic structure with respect to the original text. On the other hand, more complex deep learning approaches can cause extreme shifts in the intrinsic meaning of the text and introduce unwanted noise into the training data. To more reliably control the quality of the augmented examples, we introduce a state-of-the-art approach for Self-Controlled Text Augmentation (STA). Our approach tightly controls the generation process by introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original text. Experimental results on multiple benchmarking datasets demonstrate that STA substantially outperforms existing state-of-the-art techniques, whilst qualitative analysis reveals that the generated examples are both lexically diverse and semantically reliable."
"Many measures of societal bias in language models have been proposed in recent years. A popular approach is to use a set of word filling prompts to evaluate the behavior of the language models. In this work, we analyze the validity of two such measures -- StereoSet and CrowS-Pairs. We show that these measures produce unexpected and illogical results when appropriate control group samples are constructed. Based on this, we believe that they are problematic and using them in the future should be reconsidered. We propose a way forward with an improved testing protocol. Finally, we also introduce a new gender bias dataset for Slovak."
"Decision-makers in the humanitarian sector rely on timely and exact information during crisis events. Knowing how many civilians were injured during an earthquake is vital to allocate aids properly. Information about such victim counts is often only available within full-text event descriptions from newspapers and other reports. Extracting numbers from text is challenging: numbers have different formats and may require numeric reasoning. This renders purely string matching-based approaches insufficient. As a consequence, fine-grained counts of injured, displaced, or abused victims beyond fatalities are often not extracted and remain unseen. We cast victim count extraction as a question answering (QA) task with a regression or classification objective. We compare regex, dependency parsing, semantic role labeling-based approaches, and advanced text-to-text models. Beyond model accuracy, we analyze extraction reliability and robustness which are key for this sensitive task. In particular, we discuss model calibration and investigate few-shot and out-of-distribution performance. Ultimately, we make a comprehensive recommendation on which model to select for different desiderata and data domains. Our work is among the first to apply numeracy-focused large language models in a real-world use case with a positive impact."
"Past studies on the ICD coding problem focus on predicting clinical codes primarily based on the discharge summary. This covers only a small fraction of the notes generated during each hospital stay and leaves potential for improving performance by analysing all the available clinical notes. We propose a hierarchical transformer architecture that uses text across the entire sequence of clinical notes in each hospital stay for ICD coding, and incorporates embeddings for text metadata such as their position, time, and type of note. While using all clinical notes increases the quantity of data substantially, superconvergence can be used to reduce training costs. We evaluate the model on the MIMIC-III dataset. Our model exceeds the prior state-of-the-art when using only discharge summaries as input, and achieves further performance improvements when all clinical notes are used as input."
"With language models becoming increasingly ubiquitous, it has become essential to address their inequitable treatment of diverse demographic groups and factors. Most research on evaluating and mitigating fairness harms has been concentrated on English, while multilingual models and non-English languages have received comparatively little attention. In this paper, we survey different aspects of fairness in languages beyond English and multilingual contexts. This paper presents a survey of fairness in multilingual and non-English contexts, highlighting the shortcomings of current research and the difficulties faced by methods designed for English. We contend that the multitude of diverse cultures and languages across the world makes it infeasible to achieve comprehensive coverage in terms of constructing fairness datasets. Thus, the measurement and mitigation of biases must evolve beyond the current dataset-driven practices that are narrowly focused on specific dimensions and types of biases and, therefore, impossible to scale across languages and cultures."
"Recent advancements in interpretability research made transformer language models more transparent. This progress led to a better understanding of their inner workings for toy and naturally occurring models. However, how these models internally process sentiment changes has yet to be sufficiently answered. In this work, we introduce a new interpretability tool called PCP ablation, where we replace modules with low-rank matrices based on the principal components of their activations, reducing model parameters and their behavior to essentials. We demonstrate PCP ablations on MLP and attention layers in backdoored toy, backdoored large, and naturally occurring models. We determine MLPs as most important for the backdoor mechanism and use this knowledge to remove, insert, and modify backdoor mechanisms with engineered replacements via PCP ablation."
"Data multiplexing is a recently proposed method for improving a model's inference efficiency by processing multiple instances simultaneously using an ordered representation mixture. Prior work on data multiplexing only used task-specific Transformers without any pre-training, which limited their accuracy and generality. In this paper, we develop pre-trained multiplexed language models (MUX-PLMs) that can be widely finetuned on any downstream task. Our approach includes a three-stage training procedure and novel multiplexing and demultiplexing modules for improving throughput and downstream task accuracy. We demonstrate our method on BERT and ELECTRA pre-training objectives, with our MUX-BERT and MUX-ELECTRA models achieving 2x/5x inference speedup with a 2-4 \% drop in absolute performance on GLUE and 1-2 \% drop on token-level tasks."
"Multilingual generative language models (LMs) are increasingly fluent in a large variety of languages. Trained on the concatenation of corpora in multiple languages, they enable powerful transfer from high-resource languages to low-resource ones. However, it is still unknown what cultural biases are induced in the predictions of these models. In this work, we focus on one language property highly influenced by culture: formality. We analyze the formality distributions of XGLM and BLOOM's predictions, two popular generative multilingual language models, in 5 languages. We classify 1,200 generations per language as formal, informal, or incohesive and measure the impact of the prompt formality on the predictions. Overall, we observe a diversity of behaviors across the models and languages. For instance, XGLM generates informal text in Arabic and Bengali when conditioned with informal prompts, much more than BLOOM. In addition, even though both models are highly biased toward the formal style when prompted neutrally, we find that the models generate a significant amount of informal predictions even when prompted with formal text. We release with this work 6,000 annotated samples, paving the way for future work on the formality of generative multilingual LMs."
"Temporal concept drift refers to the problem of data changing over time. In NLP, that would entail that language (e.g. new expressions, meaning shifts) and factual knowledge (e.g. new concepts, updated facts) evolve over time. Focusing on the latter, we benchmark $11$ pretrained masked language models (MLMs) on a series of tests designed to evaluate the effect of temporal concept drift, as it is crucial that widely used language models remain up-to-date with the ever-evolving factual updates of the real world. Specifically, we provide a holistic framework that (1) dynamically creates temporal test sets of any time granularity (e.g. month, quarter, year) of factual data from Wikidata, (2) constructs fine-grained splits of tests (e.g. updated, new, unchanged facts) to ensure comprehensive analysis, and (3) evaluates MLMs in three distinct ways (single-token probing, multi-token generation, MLM scoring). In contrast to prior work, our framework aims to unveil how robust an MLM is over time and thus to provide a signal in case it has become outdated, by leveraging multiple views of evaluation."
"Multilingual Automatic Speech Recognition (ASR) models have extended the usability of speech technologies to a wide variety of languages. With how many languages these models have to handle, however, a key to understanding their imbalanced performance across different languages is to examine if the model actually knows which language it should transcribe. In this paper, we introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark, by conditioning the entire model on language identity (LID). We investigate techniques inspired from recent Connectionist Temporal Classification (CTC) studies to help the model handle the large number of languages, conditioning on the LID predictions of auxiliary tasks. Our experimental results demonstrate the effectiveness of our technique over standard CTC/Attention-based hybrid mod- els. Furthermore, our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER. Trained models are reproducible recipes are available at https://github.com/ espnet/espnet/tree/master/egs2/fleurs/asr1."
"Chain-of-thought prompting (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in arithmetic, commonsense, and symbolic reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt the language model, which poses challenges for real-world applications where labeled training data is available without human-annotated rational chains. This creates barriers to applications of CoT prompting to these general tasks. This paper proposes a new strategy, Automate-CoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoTs by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machine-generated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example in a black-box language model. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where state-of-the-art results are achieved on arithmetic reasoning (+2.7\%), commonsense reasoning (+3.4\%), symbolic reasoning (+3.2\%), and non-reasoning tasks (+2.5\%). Our code will be available at https://github.com/shizhediao/automate-cot."
"Dictionaries are one of the oldest and most used linguistic resources. Building them is a complex task that, to the best of our knowledge, has yet to be explored with generative Large Language Models (LLMs). We introduce the ""Spanish Built Factual Freectianary"" (Spanish-BFF) as the first Spanish IA-generated dictionary. This first-of-its-kind free dictionary uses GPT-3. We also define future steps we aim to follow to improve this initial commitment to the field, such as more additional languages."
"When humans read a text, their eye movements are influenced by the structural complexity of the input sentences. This cognitive phenomenon holds across languages and recent studies indicate that multilingual language models utilize structural similarities between languages to facilitate cross-lingual transfer. We use sentence-level eye-tracking patterns as a cognitive indicator for structural complexity and show that the multilingual model XLM-RoBERTa can successfully predict varied patterns for 13 typologically diverse languages, despite being fine-tuned only on English data. We quantify the sensitivity of the model to structural complexity and distinguish a range of complexity characteristics. Our results indicate that the model develops a meaningful bias towards sentence length but also integrates cross-lingual differences. We conduct a control experiment with randomized word order and find that the model seems to additionally capture more complex structural information."
"In this paper, we propose Tutoring bot, a generative chatbot trained on a large scale of tutor-student conversations for English-language learning. To mimic a human tutor's behavior in language education, the tutor bot leverages diverse educational instructions and grounds to each instruction as additional input context for the tutor response generation. As a single instruction generally involves multiple dialogue turns to give the student sufficient speaking practice, the tutor bot is required to monitor and capture when the current instruction should be kept or switched to the next instruction. For that, the tutor bot is learned to not only generate responses but also infer its teaching action and progress on the current conversation simultaneously by a multi-task learning scheme. Our Tutoring bot is deployed under a non-commercial use license at https://tutoringai.com."
"Recent years have seen impressive progress in AI-assisted writing, yet the developments in AI-assisted reading are lacking. We propose inline commentary as a natural vehicle for AI-based reading assistance, and present CARE: the first open integrated platform for the study of inline commentary and reading. CARE facilitates data collection for inline commentaries in a commonplace collaborative reading environment, and provides a framework for enhancing reading with NLP-based assistance, such as text classification, generation or question answering. The extensible behavioral logging allows unique insights into the reading and commenting behavior, and flexible configuration makes the platform easy to deploy in new scenarios. To evaluate CARE in action, we apply the platform in a user study dedicated to scholarly peer review. CARE facilitates the data collection and study of inline commentary in NLP, extrinsic evaluation of NLP assistance, and application prototyping. We invite the community to explore and build upon the open source implementation of CARE."
"We introduce ProofNet, a benchmark for autoformalization and formal proving of undergraduate-level mathematics. The ProofNet benchmarks consists of 371 examples, each consisting of a formal theorem statement in Lean 3, a natural language theorem statement, and a natural language proof. The problems are primarily drawn from popular undergraduate pure mathematics textbooks and cover topics such as real and complex analysis, linear algebra, abstract algebra, and topology. We intend for ProofNet to be a challenging benchmark that will drive progress in autoformalization and automatic theorem proving. We report baseline results on statement autoformalization via in-context learning. Moreover, we introduce two novel statement autoformalization methods: prompt retrieval and distilled backtranslation."
"Emotion-cause pair extraction (ECPE) task aims to extract all the pairs of emotions and their causes from an unannotated emotion text. The previous works usually extract the emotion-cause pairs from two perspectives of emotion and cause. However, emotion extraction is more crucial to the ECPE task than cause extraction. Motivated by this analysis, we propose an end-to-end emotion-cause extraction approach oriented toward emotion prediction (EPO-ECPE), aiming to fully exploit the potential of emotion prediction to enhance emotion-cause pair extraction. Considering the strong dependence between emotion prediction and emotion-cause pair extraction, we propose a synchronization mechanism to share their improvement in the training process. That is, the improvement of emotion prediction can facilitate the emotion-cause pair extraction, and then the results of emotion-cause pair extraction can also be used to improve the accuracy of emotion prediction simultaneously. For the emotion-cause pair extraction, we divide it into genuine pair supervision and fake pair supervision, where the genuine pair supervision learns from the pairs with more possibility to be emotion-cause pairs. In contrast, fake pair supervision learns from other pairs. In this way, the emotion-cause pairs can be extracted directly from the genuine pair, thereby reducing the difficulty of extraction. Experimental results show that our approach outperforms the 13 compared systems and achieves new state-of-the-art performance."
"Advances in computational methods and big data availability have recently translated into breakthroughs in AI applications. With successes in bottom-up challenges partially overshadowing shortcomings, the 'human-like' performance of Large Language Models has raised the question of how linguistic performance is achieved by algorithms. Given systematic shortcomings in generalization across many AI systems, in this work we ask whether linguistic performance is indeed guided by language knowledge in Large Language Models. To this end, we prompt GPT-3 with a grammaticality judgement task and comprehension questions on less frequent constructions that are thus unlikely to form part of Large Language Models' training data. These included grammatical 'illusions', semantic anomalies, complex nested hierarchies and self-embeddings. GPT-3 failed for every prompt but one, often offering answers that show a critical lack of understanding even of high-frequency words used in these less frequent grammatical constructions. The present work sheds light on the boundaries of the alleged AI human-like linguistic competence and argues that, far from human-like, the next-word prediction abilities of LLMs may face issues of robustness, when pushed beyond training data."
"Recent work on the Retrieval-Enhanced Transformer (RETRO) model has shown that off-loading memory from trainable weights to a retrieval database can significantly improve language modeling and match the performance of non-retrieval models that are an order of magnitude larger in size. It has been suggested that at least some of this performance gain is due to non-trivial generalization based on both model weights and retrieval. In this paper, we try to better understand the relative contributions of these two components. We find that the performance gains from retrieval largely originate from overlapping tokens between the database and the test data, suggesting less non-trivial generalization than previously assumed. More generally, our results point to the challenges of evaluating the generalization of retrieval-augmented language models such as RETRO, as even limited token overlap may significantly decrease test-time loss. We release our code and model at https://github.com/TobiasNorlund/retro"
"Pre-trained Transformer models such as BERT have shown great success in a wide range of applications, but at the cost of substantial increases in model complexity. Quantization-aware training (QAT) is a promising method to lower the implementation cost and energy consumption. However, aggressive quantization below 2-bit causes considerable accuracy degradation due to unstable convergence, especially when the downstream dataset is not abundant. This work proposes a proactive knowledge distillation method called Teacher Intervention (TI) for fast converging QAT of ultra-low precision pre-trained Transformers. TI intervenes layer-wise signal propagation with the intact signal from the teacher to remove the interference of propagated quantization errors, smoothing loss surface of QAT and expediting the convergence. Furthermore, we propose a gradual intervention mechanism to stabilize the recovery of subsections of Transformer layers from quantization. The proposed schemes enable fast convergence of QAT and improve the model accuracy regardless of the diverse characteristics of downstream fine-tuning tasks. We demonstrate that TI consistently achieves superior accuracy with significantly lower fine-tuning iterations on well-known Transformers of natural language processing as well as computer vision compared to the state-of-the-art QAT methods."
"Knowledge-aware question answering (KAQA) requires the model to answer questions over a knowledge base, which is essential for both open-domain QA and domain-specific QA, especially when language models alone cannot provide all the knowledge needed. Despite the promising result of recent KAQA systems which tend to integrate linguistic knowledge from pre-trained language models (PLM) and factual knowledge from knowledge graphs (KG) to answer complex questions, a bottleneck exists in effectively fusing the representations from PLMs and KGs because of (i) the semantic and distributional gaps between them, and (ii) the difficulties in joint reasoning over the provided knowledge from both modalities. To address the above two problems, we propose a Fine-grained Two-stage training framework (FiTs) to boost the KAQA system performance: The first stage aims at aligning representations from the PLM and the KG, thus bridging the modality gaps between them, named knowledge adaptive post-training. The second stage, called knowledge-aware fine-tuning, aims to improve the model's joint reasoning ability based on the aligned representations. In detail, we fine-tune the post-trained model via two auxiliary self-supervised tasks in addition to the QA supervision. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMILE) domains."
"Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems."
"To protect user privacy and meet legal regulations, federated learning (FL) is attracting significant attention. Training neural machine translation (NMT) models with traditional FL algorithm (e.g., FedAvg) typically relies on multi-round model-based interactions. However, it is impractical and inefficient for machine translation tasks due to the vast communication overheads and heavy synchronization. In this paper, we propose a novel federated nearest neighbor (FedNN) machine translation framework that, instead of multi-round model-based interactions, leverages one-round memorization-based interaction to share knowledge across different clients to build low-overhead privacy-preserving systems. The whole approach equips the public NMT model trained on large-scale accessible data with a $k$-nearest-neighbor ($$kNN) classifier and integrates the external datastore constructed by private text data in all clients to form the final FL model. A two-phase datastore encryption strategy is introduced to achieve privacy-preserving during this process. Extensive experiments show that FedNN significantly reduces computational and communication costs compared with FedAvg, while maintaining promising performance in different FL settings."
"$k$NN-MT is a straightforward yet powerful approach for fast domain adaptation, which directly plugs pre-trained neural machine translation (NMT) models with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, $k$NN-MT is burdened with massive storage requirements and high computational complexity since it conducts nearest neighbor searches over the entire reference corpus. In this paper, we propose a simple and scalable nearest neighbor machine translation framework to drastically promote the decoding and storage efficiency of $k$NN-based models while maintaining the translation performance. To this end, we dynamically construct an extremely small datastore for each input via sentence-level retrieval to avoid searching the entire datastore in vanilla $k$NN-MT, based on which we further introduce a distance-aware adapter to adaptively incorporate the $k$NN retrieval results into the pre-trained NMT models. Experiments on machine translation in two general settings, static domain adaptation and online learning, demonstrate that our proposed approach not only achieves almost 90% speed as the NMT model without performance degradation, but also significantly reduces the storage requirements of $k$NN-MT."
"Parsing spoken dialogue presents challenges that parsing text does not, including a lack of clear sentence boundaries. We know from previous work that prosody helps in parsing single sentences (Tran et al. 2018), but we want to show the effect of prosody on parsing speech that isn't segmented into sentences. In experiments on the English Switchboard corpus, we find prosody helps our model both with parsing and with accurately identifying sentence boundaries. However, we find that the best-performing parser is not necessarily the parser that produces the best sentence segmentation performance. We suggest that the best parses instead come from modelling sentence boundaries jointly with other constituent boundaries."
"The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect -- people fall into their thoughts and reinforce their pre-existing beliefs. The previous works for the political stance problem focus on (1) identifying political factors that could reflect the political stance of a news article and (2) capturing those factors effectively. Despite their empirical successes, they are not sufficiently justified in terms of how effective their identified factors are in the political stance prediction. Motivated by this, in this work, we conduct a user study to investigate important factors in political stance prediction, and observe that the context and tone of a news article (implicit) and external knowledge for real-world entities appearing in the article (explicit) are important in determining its political stance. Based on this observation, we propose a novel knowledge-aware approach to political stance prediction (KHAN), employing (1) hierarchical attention networks (HAN) to learn the relationships among words and sentences in three different levels and (2) knowledge encoding (KE) to incorporate external knowledge for real-world entities into the process of political stance prediction. Also, to take into account the subtle and important difference between opposite political stances, we build two independent political knowledge graphs (KG) (i.e., KG-lib and KG-con) by ourselves and learn to fuse the different political knowledge. Through extensive evaluations on three real-world datasets, we demonstrate the superiority of DASH in terms of (1) accuracy, (2) efficiency, and (3) effectiveness."
"This paper describes SPINDLE - an open source Python module implementing an efficient and accurate parser for written Dutch that transforms raw text input to programs for meaning composition, expressed as {\lambda} terms. The parser integrates a number of breakthrough advances made in recent years. Its output consists of hi-res derivations of a multimodal type-logical grammar, capturing two orthogonal axes of syntax, namely deep function-argument structures and dependency relations. These are produced by three interdependent systems: a static type-checker asserting the well-formedness of grammatical analyses, a state-of-the-art, structurally-aware supertagger based on heterogeneous graph convolutions, and a massively parallel proof search component based on Sinkhorn iterations. Packed in the software are also handy utilities and extras for proof visualization and inference, intended to facilitate end-user utilization."
"Multi-document grounded dialogue systems (DGDS) belong to a class of conversational agents that answer users' requests by finding supporting knowledge from a collection of documents. Most previous studies aim to improve the knowledge retrieval model or propose more effective ways to incorporate external knowledge into a parametric generation model. These methods, however, focus on retrieving knowledge from mono-granularity language units (e.g. passages, sentences, or spans in documents), which is not enough to effectively and efficiently capture precise knowledge in long documents. This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework. Specifically, the former efficiently finds relevant passages in a retrieval-and-reranking process, whereas the latter effectively extracts finer-grain spans within those passages to incorporate into a parametric answer generation model (BART, T5). Experiments on DialDoc Shared Task demonstrate the effectiveness of our method."
"Empathetic dialogue is a human-like behavior that requires the perception of both affective factors (e.g., emotion status) and cognitive factors (e.g., cause of the emotion). Besides concerning emotion status in early work, the latest approaches study emotion causes in empathetic dialogue. These approaches focus on understanding and duplicating emotion causes in the context to show empathy for the speaker. However, instead of only repeating the contextual causes, the real empathic response often demonstrate a logical and emotion-centered transition from the causes in the context to those in the responses. In this work, we propose an emotion cause transition graph to explicitly model the natural transition of emotion causes between two adjacent turns in empathetic dialogue. With this graph, the concept words of the emotion causes in the next turn can be predicted and used by a specifically designed concept-aware decoder to generate the empathic response. Automatic and human experimental results on the benchmark dataset demonstrate that our method produces more empathetic, coherent, informative, and specific responses than existing models."
"We are currently witnessing dramatic advances in the capabilities of Large Language Models (LLMs). They are already being adopted in practice and integrated into many systems, including integrated development environments (IDEs) and search engines. The functionalities of current LLMs can be modulated via natural language prompts, while their exact internal functionality remains implicit and unassessable. This property, which makes them adaptable to even unseen tasks, might also make them susceptible to targeted adversarial prompting. Recently, several ways to misalign LLMs using Prompt Injection (PI) attacks have been introduced. In such attacks, an adversary can prompt the LLM to produce malicious content or override the original instructions and the employed filtering schemes. Recent work showed that these attacks are hard to mitigate, as state-of-the-art LLMs are instruction-following. So far, these attacks assumed that the adversary is directly prompting the LLM. In this work, we show that augmenting LLMs with retrieval and API calling capabilities (so-called Application-Integrated LLMs) induces a whole new set of attack vectors. These LLMs might process poisoned content retrieved from the Web that contains malicious prompts pre-injected and selected by adversaries. We demonstrate that an attacker can indirectly perform such PI attacks. Based on this key insight, we systematically analyze the resulting threat landscape of Application-Integrated LLMs and discuss a variety of new attack vectors. To demonstrate the practical viability of our attacks, we implemented specific demonstrations of the proposed attacks within synthetic applications. In summary, our work calls for an urgent evaluation of current mitigation techniques and an investigation of whether new techniques are needed to defend LLMs against these threats."
"A large amount of feedback was collected over the years. Many feedback analysis models have been developed focusing on the English language. Recognizing the concept of feedback is challenging and crucial in languages which do not have applicable corpus and tools employed in Natural Language Processing (i.e., vocabulary corpus, sentence structure rules, etc). However, in this paper, we study a feedback classification in Mongolian language using two different word embeddings for deep learning. We compare the results of proposed approaches. We use feedback data in Cyrillic collected from 2012-2018. The result indicates that word embeddings using their own dataset improve the deep learning based proposed model with the best accuracy of 80.1% and 82.7% for two classification tasks."
"ChatGPT is a recent chatbot service released by OpenAI and is receiving increasing attention over the past few months. While evaluations of various aspects of ChatGPT have been done, its robustness, i.e., the performance when facing unexpected inputs, is still unclear to the public. Robustness is of particular concern in responsible AI, especially for safety-critical applications. In this paper, we conduct a thorough evaluation of the robustness of ChatGPT from the adversarial and out-of-distribution (OOD) perspective. To do so, we employ the AdvGLUE and ANLI benchmarks to assess adversarial robustness and the Flipkart review and DDXPlus medical diagnosis datasets for OOD evaluation. We select several popular foundation models as baselines. Results show that ChatGPT does not show consistent advantages on adversarial and OOD classification tasks, while performing well on translation tasks. This suggests that adversarial and OOD robustness remains a significant threat to foundation models. Moreover, ChatGPT shows astounding performance in understanding dialogue-related texts and we find that it tends to provide informal suggestions for medical tasks instead of definitive answers. Finally, we present in-depth discussions of possible research directions."
"Despite the dramatic success in image generation, Generative Adversarial Networks (GANs) still face great challenges in synthesizing sequences of discrete elements, in particular human language. The difficulty in generator training arises from the limited representation capacity and uninformative learning signals obtained from the discriminator. In this work, we (1) first empirically show that the mixture-of-experts approach is able to enhance the representation capacity of the generator for language GANs and (2) harness the Feature Statistics Alignment (FSA) paradigm to render fine-grained learning signals to advance the generator training. Specifically, FSA forces the mean statistics of the distribution of fake data to approach that of real samples as close as possible in the finite-dimensional feature space. Empirical study on synthetic and real benchmarks shows the superior performance in quantitative evaluation and demonstrates the effectiveness of our approach to adversarial text generation."
"We present ProsAudit, a benchmark in English to assess structural prosodic knowledge in self-supervised learning (SSL) speech models. It consists of two subtasks, their corresponding metrics, an evaluation dataset. In the protosyntax task, the model must correctly identify strong versus weak prosodic boundaries. In the lexical task, the model needs to correctly distinguish between pauses inserted between words and within words. We also provide human evaluation scores on this benchmark. We evaluated a series of SSL models and found that they were all able to perform above chance on both tasks, even when trained on an unseen language. However, non-native models performed significantly worse than native ones on the lexical task, highlighting the importance of lexical knowledge in this task. We also found a clear effect of size with models trained on more data performing better in the two subtasks."
"The COVID-19 pandemic has caused substantial damage to global health. Even though three years have passed, the world continues to struggle with the virus. Concerns are growing about the impact of COVID-19 on the mental health of infected individuals, who are more likely to experience depression, which can have long-lasting consequences for both the affected individuals and the world. Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients. In this paper, we investigated the relationship between COVID-19 infection and depression through social media analysis. Firstly, we managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection. Secondly,We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression. Thirdly, we proposed a deep neural network for early prediction of depression risk. This model considers daily mood swings as a psychiatric signal and incorporates textual and emotional characteristics via knowledge distillation. Experimental results demonstrate that our proposed framework outperforms baselines in detecting depression risk, with an AUROC of 0.9317 and an AUPRC of 0.8116. Our model has the potential to enable public health organizations to initiate prompt intervention with high-risk patients"
"Named Entity Recognition (NER) models capable of Continual Learning (CL) are realistically valuable in areas where entity types continuously increase (e.g., personal assistants). Meanwhile the learning paradigm of NER advances to new patterns such as the span-based methods. However, its potential to CL has not been fully explored. In this paper, we propose SpanKL1, a simple yet effective Span-based model with Knowledge distillation (KD) to preserve memories and multi-Label prediction to prevent conflicts in CL-NER. Unlike prior sequence labeling approaches, the inherently independent modeling in span and entity level with the designed coherent optimization on SpanKL promotes its learning at each incremental step and mitigates the forgetting. Experiments on synthetic CL datasets derived from OntoNotes and Few-NERD show that SpanKL significantly outperforms previous SoTA in many aspects, and obtains the smallest gap from CL to the upper bound revealing its high practiced value."
"The increasing reliability of automatic speech recognition has proliferated its everyday use. However, for research purposes, it is often unclear which model one should choose for a task, particularly if there is a requirement for speed as well as accuracy. In this paper, we systematically evaluate six speech recognizers using metrics including word error rate, latency, and the number of updates to already recognized words on English test data, as well as propose and compare two methods for streaming audio into recognizers for incremental recognition. We further propose Revokes per Second as a new metric for evaluating incremental recognition and demonstrate that it provides insights into overall model performance. We find that, generally, local recognizers are faster and require fewer updates than cloud-based recognizers. Finally, we find Meta's Wav2Vec model to be the fastest, and find Mozilla's DeepSpeech model to be the most stable in its predictions."
"Sentiment transfer aims at revising the input text to satisfy a given sentiment polarity while retaining the original semantic content. The nucleus of sentiment transfer lies in precisely separating the sentiment information from the content information. Existing explicit approaches generally identify and mask sentiment tokens simply based on prior linguistic knowledge and manually-defined rules, leading to low generality and undesirable transfer performance. In this paper, we view the positions to be masked as the learnable parameters, and further propose a novel AM-ST model to learn adaptive task-relevant masks based on the attention mechanism. Moreover, a sentiment-aware masked language model is further proposed to fill in the blanks in the masked positions by incorporating both context and sentiment polarity to capture the multi-grained semantics comprehensively. AM-ST is thoroughly evaluated on two popular datasets, and the experimental results demonstrate the superiority of our proposal."
"The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs' ability to produce high-quality answers. In particular, an effective approach for complex question-and-answer tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful ones to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationship demonstrate the effectiveness of our method. Our code will be available at https://github.com/shizhediao/active-cot."
"Neural networks drive the success of natural language processing. A fundamental property of natural languages is their compositional structure, allowing us to describe new meanings systematically. However, neural networks notoriously struggle with systematic generalization and do not necessarily benefit from a compositional structure in emergent communication simulations. Here, we test how neural networks compare to humans in learning and generalizing a new language. We do this by closely replicating an artificial language learning study (conducted originally with human participants) and evaluating the memorization and generalization capabilities of deep neural networks with respect to the degree of structure in the input language. Our results show striking similarities between humans and deep neural networks: More structured linguistic input leads to more systematic generalization and better convergence between humans and neural network agents and between different neural agents. We then replicate this structure bias found in humans and our recurrent neural networks with a Transformer-based large language model (GPT-3), showing a similar benefit for structured linguistic input regarding generalization systematicity and memorization errors. These findings show that the underlying structure of languages is crucial for systematic generalization. Due to the correlation between community size and linguistic structure in natural languages, our findings underscore the challenge of automated processing of low-resource languages. Nevertheless, the similarity between humans and machines opens new avenues for language evolution research."
"Using online information discovery as a case study, in this position paper we discuss the need to design, develop, and deploy (conversational) agents that can -- non-intrusively -- guide children in their quest for online resources rather than simply finding resources for them. We argue that agents should ""let children learn"" and should be built to take on a teacher-facilitator function, allowing children to develop their technical and critical thinking abilities as they interact with varied technology in a broad range of use cases."
"Deep neural network based speech enhancement technique focuses on learning a noisy-to-clean transformation supervised by paired training data. However, the task-specific evaluation metric (e.g., PESQ) is usually non-differentiable and can not be directly constructed in the training criteria. This mismatch between the training objective and evaluation metric likely results in sub-optimal performance. To alleviate it, we propose a metric-oriented speech enhancement method (MOSE), which leverages the recent advances in the diffusion probabilistic model and integrates a metric-oriented training strategy into its reverse process. Specifically, we design an actor-critic based framework that considers the evaluation metric as a posterior reward, thus guiding the reverse process to the metric-increasing direction. The experimental results demonstrate that MOSE obviously benefits from metric-oriented training and surpasses the generative baselines in terms of all evaluation metrics."
"Abstraction is a desirable capability for deep learning models, which means to induce abstract concepts from concrete instances and flexibly apply them beyond the learning context. At the same time, there is a lack of clear understanding about both the presence and further characteristics of this capability in deep learning models. In this paper, we introduce a systematic probing framework to explore the abstraction capability of deep learning models from a transferability perspective. A set of controlled experiments are conducted based on this framework, providing strong evidence that two probed pre-trained language models (PLMs), T5 and GPT2, have the abstraction capability. We also conduct in-depth analysis, thus shedding further light: (1) the whole training phase exhibits a ""memorize-then-abstract"" two-stage process; (2) the learned abstract concepts are gathered in a few middle-layer attention heads, rather than being evenly distributed throughout the model; (3) the probed abstraction capabilities exhibit robustness against concept mutations, and are more robust to low-level/source-side mutations than high-level/target-side ones; (4) generic pre-training is critical to the emergence of abstraction capability, and PLMs exhibit better abstraction with larger model sizes and data scales."
"Sentence Simplification aims to rephrase complex sentences into simpler sentences while retaining original meaning. Large Language models (LLMs) have demonstrated the ability to perform a variety of natural language processing tasks. However, it is not yet known whether LLMs can be served as a high-quality sentence simplification system. In this work, we empirically analyze the zero-/few-shot learning ability of LLMs by evaluating them on a number of benchmark test sets. Experimental results show LLMs outperform state-of-the-art sentence simplification methods, and are judged to be on a par with human annotators."
"Large language models have demonstrated an emergent capability in answering knowledge intensive questions. With recent progress on web-scale visual and language pre-training, do these models also understand how to answer visual information seeking questions? To answer this question, we present InfoSeek, a Visual Question Answering dataset that focuses on asking information-seeking questions, where the information can not be answered by common sense knowledge. We perform a multi-stage human annotation to collect a natural distribution of high-quality visual information seeking question-answer pairs. We also construct a large-scale, automatically collected dataset by combining existing visual entity recognition datasets and Wikidata, which provides over one million examples for model fine-tuning and validation. Based on InfoSeek, we analyzed various pre-trained Visual QA systems to gain insights into the characteristics of different pre-trained models. Our analysis shows that it is challenging for the state-of-the-art multi-modal pre-trained models to answer visual information seeking questions, but this capability is improved through fine-tuning on the automated InfoSeek dataset. We hope our analysis paves the way to understand and develop the next generation of multi-modal pre-training."
"The recent explosion of interest in multimodal applications has resulted in a wide selection of datasets and methods for representing and integrating information from different signals. Despite these empirical advances, there remain fundamental research questions: how can we quantify the nature of interactions that exist among input features? Subsequently, how can we capture these interactions using suitable data-driven methods? To answer this question, we propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy across input features, which we term the PID statistics of a multimodal distribution. Using 2 newly proposed estimators that scale to high-dimensional distributions, we demonstrate their usefulness in quantifying the interactions within multimodal datasets, the nature of interactions captured by multimodal models, and principled approaches for model selection. We conduct extensive experiments on both synthetic datasets where the PID statistics are known and on large-scale multimodal benchmarks where PID estimation was previously impossible. Finally, to demonstrate the real-world applicability of our approach, we present three case studies in pathology, mood prediction, and robotic perception where our framework accurately recommends strong multimodal models for each application."
"The widespread availability of internet access and handheld devices confers to social media a power similar to the one newspapers used to have. People seek affordable information on social media and can reach it within seconds. Yet this convenience comes with dangers; any user may freely post whatever they please and the content can stay online for a long period, regardless of its truthfulness. A need to detect untruthful information, also known as fake news, arises. In this paper, we present an end-to-end solution that accurately detects fake news and immunizes network nodes that spread them in real-time. To detect fake news, we propose two new stack deep learning architectures that utilize convolutional and bidirectional LSTM layers. To mitigate the spread of fake news, we propose a real-time network-aware strategy that (1) constructs a minimum-cost weighted directed spanning tree for a detected node, and (2) immunizes nodes in that tree by scoring their harmfulness using a novel ranking function. We demonstrate the effectiveness of our solution on five real-world datasets."
"Current captioning datasets, focus on object-centric captions, describing the visible objects in the image, often ending up stating the obvious (for humans), e.g. ""people eating food in a park"". Although these datasets are useful to evaluate the ability of Vision & Language models to recognize the visual content, they lack in expressing trivial abstract concepts, e.g. ""people having a picnic"". Such concepts are licensed by human's personal experience and contribute to forming common sense assumptions. We present the High-Level Dataset; a dataset extending 14997 images of the COCO dataset with 134973 human-annotated (high-level) abstract captions collected along three axes: scenes, actions and rationales. We describe and release such dataset and we show how it can be used to assess models' multimodal grounding of abstract concepts and enrich models' visio-lingusitic representations. Moreover, we describe potential tasks enabled by this dataset involving high- and low-level concepts interactions."
"In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open."
"The multi-sentential long sequence textual data unfolds several interesting research directions pertaining to natural language processing and generation. Though we observe several high-quality long-sequence datasets for English and other monolingual languages, there is no significant effort in building such resources for code-mixed languages such as Hinglish (code-mixing of Hindi-English). In this paper, we propose a novel task of identifying multi-sentential code-mixed text (MCT) from multilingual articles. As a use case, we leverage multilingual articles from two different data sources and build a first-of-its-kind multi-sentential code-mixed Hinglish dataset i.e., MUTANT. We propose a token-level language-aware pipeline and extend the existing metrics measuring the degree of code-mixing to a multi-sentential framework and automatically identify MCT in the multilingual articles. The MUTANT dataset comprises 67k articles with 85k identified Hinglish MCTs. To facilitate future research, we make the publicly available."
"Natural language provides a powerful modality to program robots to perform temporal tasks. Linear temporal logic (LTL) provides unambiguous semantics for formal descriptions of temporal tasks. However, existing approaches cannot accurately and robustly translate English sentences to their equivalent LTL formulas in unseen environments. To address this problem, we propose Lang2LTL, a novel modular system that leverages pretrained large language models to first extract referring expressions from a natural language command, then ground the expressions to real-world landmarks and objects, and finally translate the command into an LTL task specification for the robot. It enables any robotic system to interpret natural language navigation commands without additional training, provided that it tracks its position and has a semantic map with landmarks labeled with free-form text. We demonstrate the state-of-the-art ability to generalize to multi-scale navigation domains such as OpenStreetMap (OSM) and CleanUp World (a simulated household environment). Lang2LTL achieves an average accuracy of 88.4% in translating challenging LTL formulas in 22 unseen OSM environments as evaluated on a new corpus of over 10,000 commands, 22 times better than the previous SoTA. Without modification, the best performing Lang2LTL model on the OSM dataset can translate commands in CleanUp World with 82.8% accuracy. As a part of our proposed comprehensive evaluation procedures, we collected a new labeled dataset of English commands representing 2,125 unique LTL formulas, the largest ever dataset of natural language commands to LTL specifications for robotic tasks with the most diverse LTL formulas, 40 times more than previous largest dataset. Finally, we integrated Lang2LTL with a planner to command a quadruped mobile robot to perform multi-step navigational tasks in an analog real-world environment created in the lab."
|