Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
File size: 8,529 Bytes
4b583b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
## 🤗 PEFT:在低资源硬件上对十亿规模模型进行参数高效微调

## [](https://huggingface.co/blog/peft#motivation)动机


基于 transformer 架构的大型语言模型 (LLM),如 GPT、T5 和 BERT,已经在各种自然语言处理 (NLP) 任务中取得了最先进的结果。此外,还开始涉足其他领域,例如计算机视觉 (CV)(VIT、Stable Diffusion、LayoutLM)和音频(Whisper、XLS-R)。传统的范式是对通用网络规模数据进行大规模预训练,然后对下游任务进行微调。与使用开箱即用的预训练 LLM(例如,零样本推理)相比,在下游数据集上微调这些预训练 LLM 会带来巨大的性能提升。

然而,随着模型变得越来越大,在消费级硬件上对模型进行全部参数的微调变得不可行。此外,为每个下游任务独立存储和部署微调模型变得非常昂贵,因为微调模型与原始预训练模型的大小相同。参数高效微调(PEFT) 方法旨在解决这两个问题!

PEFT 方法仅微调少量(额外)模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本。这也克服了[灾难性遗忘](https://arxiv.org/abs/1312.6211)的问题,这是在 LLM 的全参数微调期间观察到的一种现象。 PEFT 方法也显示出在低数据状态下比微调更好,可以更好地泛化到域外场景。它可以应用于各种模态,例如[图像分类](https://github.com/huggingface/peft/tree/main/examples/image_classification)以及 [Stable diffusion dreambooth](https://github.com/huggingface/peft/tree/main/examples/lora_dreambooth)。

PEFT 方法还有助于提高轻便性,其中用户可以使用 PEFT 方法调整模型,以获得与完全微调的大型检查点相比,大小仅几 MB 的微小检查点。例如, `bigscience/mt0-xxl` 占用 40GB 的存储空间,全参数微调将导致每个下游数据集有对应 40GB 检查点。而使用 PEFT 方法,每个下游数据集只占用几 MB 的存储空间,同时实现与全参数微调相当的性能。来自 PEFT 方法的少量训练权重被添加到预训练 LLM 顶层。因此,同一个 LLM 可以通过添加小的权重来用于多个任务,而无需替换整个模型。

**简而言之,PEFT 方法使您能够获得与全参数微调相当的性能,同时只有少量可训练参数。**

今天,我们很高兴地介绍 [🤗 PEFT](https://github.com/huggingface/peft) 库。它提供了最新的参数高效微调技术,与 🤗 Transformers 和 🤗 Accelerate 无缝集成。这使得能够使用来自 Transformers 的最流行和高性能的模型,以及 Accelerate 的简单性和可扩展性。以下是目前支持的 PEFT 方法,即将推出更多:

1.  LoRA: [LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS](https://arxiv.org/pdf/2106.09685.pdf)  
2.  Prefix Tuning: [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.org/pdf/2110.07602.pdf)  
3.  Prompt Tuning: [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/pdf/2104.08691.pdf)  
4.  P-Tuning: [GPT Understands, Too](https://arxiv.org/pdf/2103.10385.pdf)  

## [](https://huggingface.co/blog/peft#use-cases)用例

我们在[这里](https://github.com/huggingface/peft#use-cases)探索了许多有趣的用例。以下罗列的是最有趣的:

1.  使用 🤗 PEFT LoRA 在具有 11GB RAM 的消费级硬件上调整 `bigscience/T0_3B` 模型(30 亿个参数),例如 Nvidia GeForce RTX 2080 Ti、Nvidia GeForce RTX 3080 等,并且使用 🤗 Accelerate 的 DeepSpeed 集成:[peft\_lora\_seq2seq\_accelerate\_ds\_zero3\_offload.py](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq_accelerate_ds_zero3_offload.py)。这意味着您可以在 Google Colab 中调整如此大的 LLM。
    
2.  通过使用 🤗 PEFT LoRA 和 [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) 在 Google Colab 中启用 `OPT-6.7b` 模型(67 亿个参数)的 INT8 调整,将前面的示例提升一个档次: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o?usp=sharing) 
    
3.  在具有 11GB RAM 的消费级硬件上使用 🤗 PEFT 进行稳定的 Diffusion Dreambooth 训练,例如 Nvidia GeForce RTX 2080 Ti、Nvidia GeForce RTX 3080 等。试用 Space 演示,它应该可以在 T4 实例(16GB GPU)上无缝运行:[smangrul /peft-lora-sd-dreambooth](https://huggingface.co/spaces/smangrul/peft-lora-sd-dreambooth)。
    

![peft lora dreambooth gradio space](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/peft_lora_dreambooth_gradio_space.png)  
_PEFT LoRA Dreambooth Gradio Space_

## [](https://huggingface.co/blog/peft#training-your-model-using-%F0%9F%A4%97-peft)使用 🤗 PEFT 训练您的模型

让我们考虑使用 LoRA 微调 `bigscience/mt0-large` 的情况。

1.  引进必要的库

```
  from transformers import AutoModelForSeq2SeqLM
+ from peft import get_peft_model, LoraConfig, TaskType
  model_name_or_path = "bigscience/mt0-large"
  tokenizer_name_or_path = "bigscience/mt0-large"
```

2.  创建PEFT方法对应的配置

```
peft_config = LoraConfig(
    task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
)
```

3.  通过调用 `get_peft_model` 包装基础 🤗 Transformer 模型

```
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
+ model = get_peft_model(model, peft_config)
+ model.print_trainable_parameters()
# output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282
```

就是这样!训练循环的其余部分保持不变。有关端到端示例,请参阅示例 [peft\_lora\_seq2seq.ipynb](https://github.com/huggingface/peft/blob/main/examples/conditional_generation/peft_lora_seq2seq.ipynb)。

4.  当您准备好保存模型以供推理时,只需执行以下操作。

```
model.save_pretrained("output_dir") 
# model.push_to_hub("my_awesome_peft_model") also works
```

这只会保存经过训练的增量 PEFT 权重。例如,您可以在此处的 `twitter_complaints` raft 数据集上找到使用 LoRA 调整的 `bigscience/T0_3B` :[smangrul/twitter\_complaints\_bigscience\_T0\_3B\_LORA\_SEQ\_2\_SEQ\_LM](https://huggingface.co/smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM)。请注意,它只包含 2 个文件:adapter\_config.json 和 adapter\_model.bin,后者只有 19MB。

5.  要加载它进行推理,请遵循以下代码片段:

```
  from transformers import AutoModelForSeq2SeqLM
+ from peft import PeftModel, PeftConfig

  peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM"
  config = PeftConfig.from_pretrained(peft_model_id)
  model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
+ model = PeftModel.from_pretrained(model, peft_model_id)
  tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

  model = model.to(device)
  model.eval()
  inputs = tokenizer("Tweet text : @HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again. Label :", return_tensors="pt")

  with torch.no_grad():
      outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10)
      print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
# 'complaint'
```

## [](https://huggingface.co/blog/peft#next-steps)下一步

我们发布了 PEFT 方法,作为在下游任务和域上调整大型 LLM 的有效方式,节省了大量计算和存储,同时实现与全参数微调相当的性能。在接下来的几个月中,我们将探索更多 PEFT 方法,例如 (IA)3 和瓶颈适配器。此外,我们将关注新的用例,例如 Google Colab 中 [`whisper-large`](https://huggingface.co/openai/whisper-large) 模型的 INT8 训练以及使用 PEFT 方法调整 RLHF 组件(例如策略和排序器)。

与此同时,我们很高兴看到行业从业者如何将 PEFT 应用于他们的用例 - 如果您有任何问题或反馈,请在我们的 [GitHub 仓库](https://github.com/huggingface/peft) 上提出问题 🤗。

快乐的参数高效微调之旅!


> 英文原文: <url> https://huggingface.co/blog/peft </url>
>
> 译者: Ada Cheng