|
|
|
import argparse |
|
import gc |
|
import json |
|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
import torch |
|
from tqdm import tqdm |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
TOTAL_NUM_FILES_C4_TRAIN = 1024 |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--start", |
|
type=int, |
|
required=True, |
|
help="Starting file number to download. Valid values: 0 - 1023", |
|
) |
|
parser.add_argument( |
|
"--end", |
|
type=int, |
|
required=True, |
|
help="Ending file number to download. Valid values: 0 - 1023", |
|
) |
|
parser.add_argument("--batch_size", type=int, default=32, help="Batch size") |
|
parser.add_argument( |
|
"--model_name", |
|
type=str, |
|
default="taskydata/deberta-v3-base_10xp3nirstbbflanseuni_10xc4", |
|
help="Model name", |
|
) |
|
parser.add_argument( |
|
"--local_cache_location", |
|
type=str, |
|
default="c4_download", |
|
help="local cache location from where the dataset will be loaded", |
|
) |
|
parser.add_argument( |
|
"--use_local_cache_location", |
|
type=bool, |
|
default=True, |
|
help="Set True if you want to load the dataset from local cache.", |
|
) |
|
parser.add_argument( |
|
"--clear_dataset_cache", |
|
type=bool, |
|
default=False, |
|
help="Set True if you want to delete the dataset files from the cache after inference.", |
|
) |
|
parser.add_argument( |
|
"--release_memory", |
|
type=bool, |
|
default=True, |
|
help="Set True if you want to release the memory of used variables.", |
|
) |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def chunks(l, n): |
|
for i in range(0, len(l), n): |
|
yield l[i : i + n] |
|
|
|
|
|
def batch_tokenize(data, batch_size): |
|
batches = list(chunks(data, batch_size)) |
|
tokenized_batches = [] |
|
for batch in batches: |
|
|
|
tensor = tokenizer( |
|
batch, |
|
return_tensors="pt", |
|
padding="max_length", |
|
truncation=True, |
|
max_length=512, |
|
) |
|
tokenized_batches.append(tensor) |
|
return tokenized_batches, batches |
|
|
|
|
|
def batch_inference(data, batch_size=32): |
|
preds = [] |
|
tokenized_batches, batches = batch_tokenize(data, batch_size) |
|
for i in tqdm(range(len(batches))): |
|
with torch.no_grad(): |
|
logits = model(**tokenized_batches[i].to(device)).logits.cpu() |
|
preds.extend(logits) |
|
return preds |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
|
|
tasky_commits_path = f"tasky_commits_python_{args.start}_{args.end}.jsonl" |
|
if os.path.exists(f"python/{tasky_commits_path}"): |
|
print("Exists:", tasky_commits_path) |
|
exit() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(args.model_name) |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model.to(device) |
|
model.eval() |
|
|
|
path = "python_messages.jsonl" |
|
ds = datasets.load_dataset("json", data_files=[path], ignore_verifications=True)["train"] |
|
ds = ds[range(args.start, min(args.end, len(ds)))] |
|
df = pd.DataFrame(ds, index=None) |
|
|
|
texts = df["message"].to_list() |
|
commits = df["commit"].to_list() |
|
preds = batch_inference(texts, batch_size=args.batch_size) |
|
|
|
assert len(preds) == len(texts) |
|
|
|
|
|
|
|
|
|
tasky_commits_path = f"tasky_commits_python_{args.start}_{args.end}.jsonl" |
|
|
|
with open(tasky_commits_path, "w") as f: |
|
for i in range(len(preds)): |
|
predicted_class_id = preds[i].argmax().item() |
|
pred = model.config.id2label[predicted_class_id] |
|
tasky_proba = torch.softmax(preds[i], dim=-1)[-1].item() |
|
|
|
f.write( |
|
json.dumps( |
|
{ |
|
"commit": commits[i], |
|
"message": texts[i], |
|
"proba": tasky_proba, |
|
} |
|
) |
|
+ "\n" |
|
) |
|
|
|
|